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Problem Formulation

We want to solve the finite-sum optimization problem

Limitations of Existing Conditions
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Figure 1:Training of 3 layer LSTM model that shows Aiming condition does not
always hold since the angle ∠(∇f (xk), xk−xK) can be negative. The right figure
demonstrates that the possible constant µ in PL condition should be small.

• Necessity of Over-parameterization. The theoretical
justification of conditions such as Aiming [2] and PL [3] require
a significant amount of overparameterization.

• Necessity of Invexity. The conditions imply that any
stationary point is a global minimum (i.e., exclusion of saddle
points and local minima).

• Lack of Theory. Several works have studied the empirical
properties of the loss landscape of neural networks but fall short
of providing theoretical explanations for this observed
phenomenon.

• Lack of Empirical Evidence. Several theoretical works
prove results on the loss landscape without supporting their
claims using experimental validation on deep learning
benchmarks.

Main Contributions

• We introduce the α-β-condition and theoretically demonstrate
its applicability to a wide range of complex functions, notably
those that include local saddle points and local minima.

• We empirically validate that the α-β-condition is a meaningful
assumption that captures a wide range of practical functions,
including matrix factorization and neural networks (ResNet,
LSTM, GNN, Transformer, and other architectures).

• We analyze the theoretical convergence of several optimizers
under α-β-condition, including vanilla SGD, SPSmax, and NGN.

• We provide empirical and theoretical counter-examples where
the weakest assumptions, such as the PL and Aiming
conditions, do not hold, but the α-β-condition does.

Table 1:Summary of existing assumptions on the optimization problem and their limitations. Here S denotes the set of minimizers of f and f ∗
i := argminxfi(x).

Condition Definition Comments

QCvx [1] ⟨∇f (x), x − x∗⟩ ≥ θ(f (x) − f (x∗))
for some fixed x∗ ∈ S - excludes saddle points

Aiming [2] ⟨∇f (x), x − Proj(x, S)⟩ ≥ θf (x)
- excludes saddle points

- in theory requires over-parameterization [2]
- does not always hold in practice [Fig. 1 a-b]

PL [3] ∥∇f (x)∥2 ≥ 2µ(f (x) − f ∗)
- excludes saddle points

- in theory requires over-parameterization [4]
- does not always hold in practice [Fig. 1 c-d]

α-β-condition
[This work]

⟨∇fi(x), x − Proj(x, S)⟩ ≥ α(fi(x) − fi(Proj(x, S)))
−β(fi(x) − f ∗

i )
- might have saddles and local minima [Fig. 2 (b-c)]

- in practice does not require
over-parameterization [2 layer NN ex.]

The Proposed Condition and Examples

(a) f1(x) = (x+y)2

1+(x+y)2, (b) f1(x) = 1 − e−x2−y2
, (c) f1(x) = 1+x2+y2

4+x2+y2,

f2(x) = (x+y+1)2

1+(x+y+1)2 f2(x) = 1 − e−(x−2)2−(y−2)2
f2(x) = (x−2.5)2+(y−2.5)2

4+(x−2.5)2+(y−2.5)2

Figure 2:Loss landscape of f that satisfy α-β-condition. These examples demonstrate that the problem (1) that satisfies α-β-condition might have an unbounded set of
minimizers S (left), a saddle point (center), and local minima (right) in contrast to the PL and Aiming conditions.

Definition of α-β-condition

Let X ⊆ Rd be a set and consider a function f : X → R as defined in (1). Then f satisfies the α-β-condition with positive parameters
α and β such that α > β if for any x ∈ X there exists xp ∈ Proj(x, S) such that for all i ∈ [n]

⟨∇fi(x), x − xp⟩ ≥ α(fi(x) − fi(xp)) − β(fi(x) − f ∗
i ).

Matrix Factorization. Let f, fij be such that

f (W, S) = 1
2nm

∥X − W ⊤S∥2
F = 1

2nm

∑
i,j

(Xij − w⊤
i sj)2,

fij(W, S) = 1
2
(Xij − w⊤

i sj)2,

where X ∈ Rn×m, W = (wi)n
i=1 ∈ Rk×n, S = (sj)m

j=1 ∈ Rk×m, and
rank(X) = r ≥ k. We assume that X is generated using matrices
W ∗ and S∗ with non-zero additive noise that minimize empirical
loss, namely, X = (W ∗)⊤S∗ + (εij)i∈[n],j∈[m] where W ∗, S∗ =
argminW,Sf (W, S). Let X be any bounded set that contains S.
Then α-β-condition is satisfied with α = β + 1 and some β > 0.

Two Layer Neural Network. Consider training a two-layer
neural network with a logistic loss

f (W, v) = 1
n

n∑
i=1

fi(W, v), fi(W, v) = ϕ(yi · v⊤σ(Wxi))

for a classification problem where ϕ(t) := log(1 + exp(−t)),
W ∈ Rk×d, v ∈ Rk, σ is a ReLU function applied coordinate-wise,
yi ∈ {−1, +1} is a label and xi ∈ Rd is a feature vector. Let X be
any bounded set that contains S. Then the α-β-condition holds in
X for some α ≥ 1 and β = α − 1.

Convergence under α-β-condition

Theorem. Assume that each fi is L-smooth and the interpolation error σ2
int := E[f ∗ − f ∗

i ] is bounded. Then the iterates of SGD with
stepsize γ ≤ α−β

2L satisfy

min
0≤k<K

E[f (xk) − f ∗] ≤ E[dist(x0, S)2]
K

1
γ(α − β)

+ 2Lγ

α − β
σ2

int + 2β

α − β
σ2

int.

Empirical Verification

Model’s width ↗ Model’s depth ↗ Batch size ↗
Change in βσ2

int ↘ ↘ ↘
Table 2:Summary of how the non-vanishing term βσ2

int changes as a function of
specific quantities of interest.

ResNet9 ResNet18

ResNet34
Figure 3:Training of ResNet models on CIFAR100 dataset. Here T (xk) =
⟨∇fik

(xk), xk − xK⟩ − α(fik
(xk) − fik

(xK)) − βfik
(xk) assuming that f ∗

i = 0.

Minimum is taken across all runs and iterations for a given pair of (α, β).
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Figure 4:α-β-condition in the training of some large models from AlgoPerf. Here
T (xk) = ⟨∇fik

(xk), xk − xK⟩ − α(fik
(xk) − fik

(xK)) − βfik
(xk) assuming that

f ∗
i = 0. Minimum is taken across all runs and iterations for a given pair of (α, β).
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