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Problem Formulation Table 1:Summary of existing assumptions on the optimization problem and their limitations. Here S denotes the set of minimizers of f and f/ := argmin_f;(x). Empirica] Verification
We want to solve the finite-sum optimization problem Condition Definition Comments Model’s width * Model’s depth ~ Batch size
P — ) > — |
f* = min f(x) e [fi = minfi(z) QCvx [1] (V@) 2 — %) = (9(]:(56) f(z7)) - excludes saddle points Change in foy, hN hN hN
z z for some fixed x* € S | . , .
: Table 2:Summary of how the non-vanishing term o7, changes as a function of
- excludes saddle points specific quantities of interest
1 n Aiming [2] (Vf(zx),z — Proj(z,S)) > 0f(x) - in theory requires over-parameterization [2] — |
: def - does not always hold in practice [Fig. 1 a-b]
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Figure 3:Training of ResNet models on CIFAR100 dataset. Here T(x;) =
(szk(.rk), r* — $K> _ O‘(fzk;(xk) - flk(ajK)) — Bf'lk;(ajk) assuming that f* = 0.

Minimum is taken across all runs and iterations for a given pair of («, ).

Figure 1:Training of 3 layer LSTM model that shows Aiming condition does not
always hold since the angle Z(V f(z*), ¥ — ) can be negative. The right figure

demonstrates that the possible constant p in PL condition should be small.
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(@) Fi(2) = rirsty (b) fi(x) =1 —e Y, () filw) = s, - ;
e Necessity of Over-parameterization. The theoretical folz) = (+y+1)° folz) =1— o—(1—2)*—(y—2)? folz) = (£—2.5) 2(3/ 2.5)° 25
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points and local minima). Definition of a-B-condition a o
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propert.ie.s of the 105? landscape Qf neural networks but fall short Let X C R? be a set and consider a function f: X — R as defined in (1). Then f satisfies the a-S-condition with positive parameters 40 50
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) for a classification problem where ¢(t) — 10g(1 4 exp(—t)), Figure 4:a-B-condition in the training of some large models from AlgoPerf. Here
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itq applicability to a wide range of Complex functions notably rank(X) — r > k. We assume that X is generated using matrices Yy; € {_1’ _|_1} is 3 label and r; € R%is a feature vector. Let X be f# = 0. Minimum is taken across all runs and iterations for a given pair of («, 3).
hose that include Tocal saddle voints and local minin;m, W* and 5" with non-zero additive noise that minimize empirical any bounded set that contains S. Then the a-(3-condition holds in Ref
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LSTM, GNN, Transformer, and other architectures). Convergence under o- ﬁ-eondition 2] C. Liu, D. Drusvyatskiy, M. Belkin, D. Davis, Y. Ma, Aiming
e We analyze the theoretical convergence of several optimizers towards the minimizers: fast convergence of 5GD for
under a-B-condition, including vanilla SGD, SPS, .., and NGN. Theorem. Assﬁume that each f; is L-smooth and the interpolation error o7, = E[f* — f#] is bounded. Then the iterates of SGD with overparametrized problems. NeurIPS, 2023.
e We provide empirical and theoretical counter-examples where stepsize 7 < satisty 3 B: I. Polyak, Gradient methods for the minimisation ot
the Weakest agsumption& SUCh as the Pl and Almlng min E[f([ljk) B f*] < E[dlSt(gE07 8)2] ] n 2[/}/ 0_2 n 26 0_2 fU.HCthHaIS. USSR Comp Math and Math Phys., 1963.
conditions, do not hold, but the a-8-condition does. 0<k<K — K va—B)  a—pmT = glm 4] C. Liu, L. Zhu, M. Belkin, Loss landscapes and optimization in

overparameterized non-linear systems and neural networks. Appl.
and Comp. Harm. Analysis, 2022.



