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Problem Formulation

We want to solve the finite-sum optimization problem

• This problem has many applications in machine learning,
data science and engineering.

• We focus on the regime when n and d are very large. This
is typically the case in the big data settings (e.g., massively
distributed and federated learning).

Asynchronous Communication

The source of asynchrony might be:
• Workers may have different computation powers or

communication channels.
• Message-passing failures.
• Workers might be inactive.
Why we need asynchronous communication:
• Synchronized communication may drastically slow down the

training if workers’ computation powers significantly differ from
each other.

• Asynchronous communication decreases communication
bottleneck.

Main Contributions

• Unified framework, AsGrad, to analyze asynchronous SGD-type
methods.

• As a byproduct of the analysis, we design and analyze a new
asynchronous method, called shuffled asynchronous SGD,
which can outperform existing ones both theoretically and
practically.

• Our framework recovers popular synchronous variants of SGD
with the best-known convergence guarantees.

• All of our results have better or similar dependencies on the
maximum delay. we remove entirely dependencies on maximum
delay used by prior works.

Table 1:Asynchronous algorithms whose convergence analysis is covered by our framework. For shuffled asynchronous SGD τC = n. BG = requires Bounded Gradients.
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(a) We present the best-known rates under the same set of assumptions as we use in the analysis in O-notation.
(b) [1] uses delay adaptive stepsizes to get rid of the dependency on τmax.
(c) If we set ηl = γ

b , ηg = b, Q = 1 in Theorem 1 [3]. The analysis is done under the unrealistic assumption that {it}T−1
t=0 are distributed

uniformly at random.

Assumptions

A1 Smoothness. Each function fi is L-smooth, namely
∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥ ∀x, y ∈ Rd.

A2 Bounded variance. Stochastic gradients gi(x) := ∇fi(x, ξ) are
unbiased and have bounded variance, i.e.

Eξ∼Di
[∥∇fi(x, ξ) − ∇fi(x)∥2] ≤ σ2 ∀x ∈ Rd.

A3 Bounded heterogeneity. Each local gradient ∇fi(x) satisfies the
bounded heterogeneity condition

∥∇fi(x) − ∇f (x)∥2 ≤ ζ2, ∀x ∈ Rd.

For some results, we also need the boundedness of local gradients.
A4 Bounded gradients. Each local gradient ∇fi(x) satisfies

∥∇fi(x)∥ ≤ G ∀x ∈ Rd.

Notation and Convergence Theory

• At+1 and Rt sets of assigned and received jobs at iteration t.

• τt (resp. τ̃t) a delay of the received (resp. assigned) gradient at
iteration t.

• τC a maximum number of active jobs, i.e.
τC := max

0≤t≤T
|At+1 \ Rt|.

• ν2 is a delay variance associated with a sequence of indices
{it}t≥0 and defined as
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• τmax (resp. τ̃max) a maximum delay of received (resp. assigned)
gradients during the training, i.e.

τmax := max
{

max
0≤t≤T

τt, max
(i,j)∈AT+1\RT

T − j

}
.

• For any given correlation period τ ≥ 1 we successively split the
set of received gradient indices {it}t≥0 into ⌈T

τ ⌉ chunks of size τ .
The sequence correlation σ2

kτ within k-th period is defined as
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Theorem 1 (Analysis of gradient receiving process). Let Assumptions A1 and A2 hold. Let the stepsize γ satisfy inequalities 6Lγ ≤ 1
and 20Lγ

√
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⌋
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Theorem 2 (Analysis of gradient assigning process). Let Assumptions A1, A2, and A4 hold. Let the stepsize γ satisfies inequalities
6Lγ ≤ 1 and 30Lγ max{τ̃max, τC} ≤ 1, the correlation period τ =

⌊
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Algorithm 1: AsGrad framework: General Asynchronous SGD
Input: x0 ∈ Rd, stepsize γ > 0, set of assigned jobs A0 = ∅,
set of received jobs R0 = ∅
Initialization: for all jobs (i, 0) ∈ A1, the server assigns
worker i to compute a stochastic gradient gi(x0)
for t = 0, 1, . . . T − 1 do

Once worker it finishes a job (it, πt) ∈ At+1, it sends git
(xπt

)
to server
server updates xt+1 = xt − γgit

(xπt
) and

Rt+1 = Rt ∪ {(it, πt)}
server assigns worker kt+1 to compute a gradient gkt+1(xαt+1)
server updates the set At+2 = At+1 ∪ {(kt+1, αt+1)}

end

Experiments

We consider Logistic Regression problem with non-convex regular-
ization:

min
x∈Rd

1
n

n∑
i=1

fi(x) + λ
d∑

j=1

x2
j

1 + x2
j

 , fi(x) = 1
m

m∑
j=1

log
(
1 + e−bija

⊤
ijx
)

.

Each worker has a parameter si and spends r seconds to compute
a gradient according to
• Fixed: r ≡ si • Normal: r = |s| + 1, s ∼ N (si, si)
• Poisson: r ∼ Po(si) • Uniform: r ∼ Uni(0, si)

(a) fixed (b) normal
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(c) poisson (d) uniform
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Figure 1:Comparison of pure, random, and shuffled asynchronous SGD with
tuned stepsizes and full gradient computation on w7a dataset with various delay
patterns. Here n = 10, λ = 0.1, d = 300, m = 2505.
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