
AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms
Rustem Islamov1,2,3 Mher Safaryan2 Dan Alistarh2

1University of Basel 2Insitute of Science and Technology Austria (ISTA) 3Insitut Polytechnique de Paris (IP Paris)

Problem Formulation

We want to solve the finite-sum optimization problem

• This problem has many applications in machine learning,
data science and engineering.

• We focus on the regime when n and d are very large. This
is typically the case in the big data settings (e.g., massively
distributed and federated learning).

Asynchronous Communication

The source of asynchrony might be:
• Workers may have different computation powers or

communication channels.
• Message-passing failures.
• Workers might be inactive.
Why we need asynchronous communication:
• Synchronized communication may drastically slow down the

training if workers’ computation powers significantly differ from
each other.

• Asynchronous communication decreases communication
bottleneck.

Main Contributions

• Unified framework, AsGrad, to analyze asynchronous SGD-type
methods.

• As a byproduct of the analysis, we design and analyze a new
asynchronous method, called shuffled asynchronous SGD,
which can outperform existing ones both theoretically and
practically.

• Our framework recovers popular synchronous variants of SGD
with the best-known convergence guarantees.

• All of our results have better or similar dependencies on the
maximum delay. we remove entirely dependencies on maximum
delay used by prior works.

Table 1:Asynchronous algorithms whose convergence analysis is covered by our framework. For shuffled asynchronous SGD τC = n. BG = requires Bounded Gradients.

Method Algorithm Citation BG Rate (a)

[1] No τC

T +
(

σ2

T

)1/2
+ ζ2 (b)

Pure Asynchronous SGD (kt+1, αt+1) = (it, t + 1) Ours No
√

τmaxτC

T +
(

σ2

T

)1/2
+ ζ2

Ours Yes τC

T +
(

σ2

T

)1/2
+
(

GτC

T

)2/3
+ ζ2

Pure Asynchronous SGD
with waiting (kt+1, αt+1) =

(
it, ⌊t+1

b ⌋b
) Ours No

√
τmaxτC

T
√

b
+
(

σ2

Tb

)1/2
+ ζ2

Ours Yes LF0τC

Tb +
(

σ2

Tb

)1/2
+
(

GτC

Tb

)2/3
+ ζ2

[2] No LF0
√

τmaxτC

T +
(

σ2

T

)1/2
+
(

ζ2

T

)1/2
+
(

τCζ
T

)2/3

Random Asynchronous SGD kt+1 ∼ Unif[n], αt+1 = t + 1 [2] Yes τC

T +
(

σ2

T

)1/2
+
(

ζ2

T

)1/2
+
(

τCG
T

)2/3

Ours Yes τC

T +
(

σ2

T

)1/2
+
(

ζ2

T

)1/2
+
(

τCG
T

)2/3

Random Asynchronous SGD
with waiting (FedBuff) kt+1 ∼ Unif[n], αt+1 = ⌊t+1

b ⌋ [3] Yes 1
T +

(
σ2

T

)1/2
+
(

ζτmax
T

)2/3
+
(

Gτmax
T

)2/3 (c)

Ours Yes τC

T +
(

ζ2

Tb

)1/2
+
(

σ2

Tb

)1/2
+
(

τCG
Tb

)2/3

Shuffled Asynchronous SGD
[NEW]

kt+1 = χ(j), αt+1 = t + 1
j − 1 = t(mod n)

χ is a permutation of [n]
Ours Yes n

T +
(

σ2

T

)1/2
+
(√

nζ
T

)2/3
+
(

Gn
T

)2/3

(a) We present the best-known rates under the same set of assumptions as we use in the analysis in O-notation.
(b) [1] uses delay adaptive stepsizes to get rid of the dependency on τmax.
(c) If we set ηl = γ

b , ηg = b, Q = 1 in Theorem 1 [3]. The analysis is done under the unrealistic assumption that {it}T−1
t=0 are distributed

uniformly at random.

Assumptions

A1 Smoothness. Each function fi is L-smooth, namely
∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥ ∀x, y ∈ Rd.

A2 Bounded variance. Stochastic gradients gi(x) := ∇fi(x, ξ) are
unbiased and have bounded variance, i.e.

Eξ∼Di
[∥∇fi(x, ξ) − ∇fi(x)∥2] ≤ σ2 ∀x ∈ Rd.

A3 Bounded heterogeneity. Each local gradient ∇fi(x) satisfies the
bounded heterogeneity condition

∥∇fi(x) − ∇f (x)∥2 ≤ ζ2, ∀x ∈ Rd.

For some results, we also need the boundedness of local gradients.
A4 Bounded gradients. Each local gradient ∇fi(x) satisfies

∥∇fi(x)∥ ≤ G ∀x ∈ Rd.

Notation and Convergence Theory

• At+1 and Rt sets of assigned and received jobs at iteration t.

• τt (resp. τ̃t) a delay of the received (resp. assigned) gradient at
iteration t.

• τC a maximum number of active jobs, i.e.
τC := max

0≤t≤T
|At+1 \ Rt|.

• ν2 is a delay variance associated with a sequence of indices
{it}t≥0 and defined as

ν :=
T−1∑
t=0

E


∥∥∥∥∥∥

t−1∑
j=πt

∇fij
(xπj

) − ∇f (xπj
)

∥∥∥∥∥∥
2
 .

• τmax (resp. τ̃max) a maximum delay of received (resp. assigned)
gradients during the training, i.e.

τmax := max
{

max
0≤t≤T

τt, max
(i,j)∈AT+1\RT

T − j

}
.

• For any given correlation period τ ≥ 1 we successively split the
set of received gradient indices {it}t≥0 into ⌈T

τ ⌉ chunks of size τ .
The sequence correlation σ2

kτ within k-th period is defined as

σ2
kτ := max

0≤j<τ
E


∥∥∥∥∥∥

min{kτ+j,T−1}∑
t=kτ

∇fit
(xkτ) − ∇f (xkτ)

∥∥∥∥∥∥
2
 .

Theorem 1 (Analysis of gradient receiving process). Let Assumptions A1 and A2 hold. Let the stepsize γ satisfy inequalities 6Lγ ≤ 1
and 20Lγ

√
τmaxτC ≤ 1, the correlation period τ =

⌊
1

20Lγ

⌋
, and quantities {σ2

k,τ}
⌊T/τ⌋
k=0 and ν2 are finite. Then

E
[
∥∇f (x̂T)∥2

]
≤ O

(
1

γT
+ Lγσ2 + L2γ2Φ

)
, Φ := 1

⌊T/τ⌋

⌊T/τ⌋∑
k=0

σ2
k,τ + 1

T
ν2.

Theorem 2 (Analysis of gradient assigning process). Let Assumptions A1, A2, and A4 hold. Let the stepsize γ satisfies inequalities
6Lγ ≤ 1 and 30Lγ max{τ̃max, τC} ≤ 1, the correlation period τ =

⌊
1

30Lγ

⌋
, quantities {σ̃2

k,τ}
⌊T/τ⌋
k=0 and ν̃2 are finite. Then

E
[
∥∇f (x̂T)∥2

]
≤ O

(
1

γT
+ Lγσ2 + L2γ2Φ̃ + L2γ2(τC − 1)2G2

)
, Φ̃ := 1

⌊T/τ⌋

⌊T/τ⌋∑
k=0

σ̃2
k,τ + 1

T
ν̃2.

Algorithm 1: AsGrad framework: General Asynchronous SGD
Input: x0 ∈ Rd, stepsize γ > 0, set of assigned jobs A0 = ∅,
set of received jobs R0 = ∅
Initialization: for all jobs (i, 0) ∈ A1, the server assigns
worker i to compute a stochastic gradient gi(x0)
for t = 0, 1, . . . T − 1 do

Once worker it finishes a job (it, πt) ∈ At+1, it sends git
(xπt

)
to server
server updates xt+1 = xt − γgit

(xπt
) and

Rt+1 = Rt ∪ {(it, πt)}
server assigns worker kt+1 to compute a gradient gkt+1(xαt+1)
server updates the set At+2 = At+1 ∪ {(kt+1, αt+1)}

end

Experiments

We consider Logistic Regression problem with non-convex regular-
ization:

min
x∈Rd

1
n

n∑
i=1

fi(x) + λ
d∑

j=1

x2
j

1 + x2
j

 , fi(x) = 1
m

m∑
j=1

log
(
1 + e−bija

⊤
ijx
)

.

Each worker has a parameter si and spends r seconds to compute
a gradient according to
• Fixed: r ≡ si • Normal: r = |s| + 1, s ∼ N (si, si)
• Poisson: r ∼ Po(si) • Uniform: r ∼ Uni(0, si)

(a) fixed (b) normal

0 1250 2500 3750 5000
Iterations

100

10¡1

10¡2

10¡3

10¡4

kr
f(
x
t)
k

Pure Asynchronous SGD
Random Asynchronous SGD
Shuffle Asynchronous SGD

0 1250 2500 3750 5000
Iterations

100

10¡1

10¡2

10¡3

10¡4

kr
f(
x
t)
k

Pure Asynchronous SGD
Random Asynchronous SGD
Shuffle Asynchronous SGD

(c) poisson (d) uniform

0 1250 2500 3750 5000
Iterations

100

10¡1

10¡2

10¡3

10¡4

kr
f(
x
t)
k

Pure Asynchronous SGD
Random Asynchronous SGD
Shuffle Asynchronous SGD

0 1250 2500 3750 5000
Iterations

100

10¡1

10¡2

10¡3

10¡4

kr
f(
x
t)
k

Pure Asynchronous SGD
Random Asynchronous SGD
Shuffle Asynchronous SGD

Figure 1:Comparison of pure, random, and shuffled asynchronous SGD with
tuned stepsizes and full gradient computation on w7a dataset with various delay
patterns. Here n = 10, λ = 0.1, d = 300, m = 2505.

References

[1] K. Mishchenko, F. Bach, M. Even, and B. Woodworth. Asyn-
chronous SGD beats minibatch SGD under arbitrary delays.
Advances in Neural Information Processing Systems, 2022.
[2] A. Koloskova, S. Stich, and M. Jaggi. Sharper convergence
guarantees for asynchronous SGD for distributed and feder-
ated learning. Advances in Neural Information Processing Sys-
tems, 2022.
[3] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M.
Malek, and D. Huba. Federated learning with buffered asyn-
chronous aggregation. International Conference on Artificial In-
telligence and Statistics, 2022.
[4] A. Koloskova, N. Doikov, S. U. Stich, and M. Jaggi. Shuffle
SGD is always better than SGD: Improved analysis of SGD with
arbitrary data orders. arXiv preprint arXiv:2305.19259, 2023.

