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Problem Formulation

We want to solve the finite-sum optimization problem

f(zx) > f* for all z € RY Lower bounded

non-convex

of 1
min 3 f(z) (izfﬁz:fz’(ﬂ?)
1=1

# model Empirical risk/loss Lasel fpefe
parameters ocal training data

l

Local loss functionf; () = E¢p, [ fe(x)]

# clients/devices

e This problem has many applications in machine learning,
data science and engineering.

e We focus on the regime when n and d are very large. This

is typically the case in the big data settings (e.g., massively
distributed and federated learning).

Asynchronous Communication

Vfl(l'n]

18t worker finished
computations

Workers are busy

The source of asynchrony might be:

e Workers may have different computation powers or
communication channels.

e Message-passing failures.

e Workers might be inactive.
Why we need asynchronous communication:

e Synchronized communication may drastically slow down the
training it workers’ computation powers significantly differ from
each other.

e Asynchronous communication decreases communication
bottleneck.

Main Contributions

e Unified framework, AsGrad, to analyze asynchronous SGD-type
methods.

e As a byproduct of the analysis, we design and analyze a new
asynchronous method, called shuffled asynchronous SGD,
which can outperform existing ones both theoretically and
practically.

e Our framework recovers popular synchronous variants of SGD
with the best-known convergence guarantees.

e All of our results have better or similar dependencies on the
maximum delay. we remove entirely dependencies on maximum
delay used by prior works.
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Table 1:Asynchronous algorithms whose convergence analysis is covered by our framework. For shuffled asynchronous SGD 7 = n. BG = requires Bounded Gradients.
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Random Asynchronous SGD

‘ — |t
with waiting (FedBuff) ki1 ~ Unif[n], apyy = |57

kt+1:X(j)aOét+1:t+1 o\ 1/2
Shuffled A[S,I)\/InEc\P;\rlc])nous SGD i — 1= t(mod n) Ours  Ves /

X is a permutation of |n]

(a) We present the best-known rates under the same set of assumptions as we use in the analysis in O-notation.

(b) [1] uses delay adaptive stepsizes to get rid of the dependency on 7.

(c) If we set m; = 2,1, =b,Q =1 in Theorem 1 [3]. The analysis is done under the unrealistic assumption that {i;}, ' are distributed
uniformly at random.

Assumptions

Al Smoothness. Each function f; is L-smooth, namely
IV filz) = Vfily)ll < Lllz —yl| Va,y e R

A2 Bounded variance. Stochastic gradients g;(x) := V f;(x, &) are
unbiased and have bounded variance, i.e.

Ecp |V fi(z,&) = Vfi(z)|] < 0® Vo eR"

A3 Bounded heterogeneity. Each local gradient V f;(x) satisfies the
bounded heterogeneity condition

|V fi(z) = Vf@)|? < VzeR

For some results, we also need the boundedness of local gradients.
A4 Bounded gradients. Each local gradient V f;(x) satisfies

IVfi(z)|]| <G VzeR”

Notation and Convergence Theory

o A, 1 and R; sets of assighed and received jobs at iteration t. ® Timax (resp. Tmax) @ maximum delay of received (resp. assigned)

o 7; (resp. 7;) a delay of the received (resp. assigned) gradient at gradients during the training, i.e.

Iiteration t.

Tmax .= Max ¢ max Ty, max 1 — 7.
{O<t<T ( 7j>€AT—|—1\RT

® 7o a maximum number of active jobs, i.e.

7o = max [Aiq \ Rel.

0<t<T

® For any given correlation period 7 > 1 we successively split the

: set of received gradient indices {4 };>¢ into || chunks of size 7.

* v is a delay variance associated with a sequence of indices The sequence correlation o7 within k-th period is defined as
{i;}+>0 and defined as _ ) minfbr 45 T} -
ot = max E | S0 V(o) — Vo)
— Z E Z vfij<x7Tj) - vf(xﬂ) . SIS t=kT
t=0 J=T - i

Theorem 1 (Analysis of gradient receiving process). Let Assumptions Al and A2 hold. Let the stepsize ~y satisfy inequalities 6Ly < 1

—QOlLyJ' and quantities {07}, ; ﬁ{)ﬂ and v° are finite. Then

1
E |V ()] < O (ﬁ + Lo+ W@) |

Theorem 2 (Analysis of gradient assigning process). Let Assumptions Al, A2, and A4 hold. Let the stepsize v satisfies inequalities

and 20L~y./TnaxTc < 1, the correlation period 7 = {
7/7]

= 7] & ot

6L~ <1 and 30L~y max{Tax, 7o} < 1, the correlation period 7 = {302 J quantities {U,M ch /™) and 72 are finite. Then
E {HVf(:IAJT)HQ} <O (L + Lyo? 4+ L*4*® + L~ (¢ — 1)2G2> O = : LTE/SJ Gy 152_
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Algorithm 1: AsGrad framework: General Asynchronous SGD
Input: 2" € R?, stepsize v > 0, set of assigned jobs Ay = 0,
set of received jobs Ry = ()

Initialization: for all jobs (¢,0) € A;, the server assigns
worker ¢ to compute a stochastic gradient g;(z)
fort=0,1,... T —1do

Once worker ; finishes a job (i, 1) € Ayyq, it sends g (zr,)
to server

server updates z;.1 = x; — Vg;,(Ty,) and

Riv1 =R U{(ir, 7))}
server assigns worker k) to compute a gradient g, ,(Zq,.,)

server updates the set A;,o = A; 1 U {(ktJrla Oét+1)}
end

Experiments

We consider Logistic Regression problem with non-convex regular-

1zation:
d ZEQ ) 1 m
J _ _ bawx
;2%@{ Zf@ +)\;1+$2>, fz(x)—mjz_;log(lJre )
/

Each Worker has a parameter s; and spends r seconds to compute
a gradient according to
e Fixed: r = s;

e Poisson: r ~ Po(s;)

e Normal: r = |s|+ 1, s ~ N(Sz, Si)
e Uniform: r ~ Uni(0, s;)

(a) fixed (b) normal
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Figure 1:Comparison of pure, random, and shuffled asynchronous SGD with

tuned stepsizes and full gradient computation on w7a dataset with various delay
patterns. Here n = 10, A = 0.1, d = 300, m = 2505.
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