

¹University of Basel

Problem Formulation

- This problem has many applications in machine learning, data science and engineering.
- We focus on the regime when n and d are very large. This is typically the case in the big data settings (e.g., massively distributed and federated learning).

Asynchronous Communication

The source of asynchrony might be:

- Workers may have different computation powers or communication channels.
- Message-passing failures.
- Workers might be inactive.

Why we need asynchronous communication:

- Synchronized communication may drastically slow down the training if workers' computation powers significantly differ from each other.
- Asynchronous communication decreases *communication* bottleneck.

Main Contributions

- Unified framework, AsGrad, to analyze asynchronous SGD-type methods.
- As a byproduct of the analysis, we design and analyze a new asynchronous method, called *shuffled asynchronous SGD*, which can outperform existing ones both theoretically and practically.
- Our framework recovers popular synchronous variants of SGD with the best-known convergence guarantees.
- All of our results have better or similar dependencies on the maximum delay. we remove entirely dependencies on maximum delay used by prior works.

AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms

Rustem Islamov^{1,2,3} Mher Safaryan² Dan Alistarh²

²Insitute of Science and Technology Austria (ISTA)

Table 1:Asynchronous algorithms whose convergence analysis is covered by our framework. For shuffled asynchronous SGD $\tau_C = n$. **BG** = requires **B**ounded **G**radients.

Method	Algorithm	Citation	BG	Rate (a)
		[1]	No	$rac{ au_C}{T} + \left(rac{\sigma^2}{T} ight)^{1/2} + \zeta^2$ (b)
Pure Asynchronous SGD	$(k_{t+1}, \alpha_{t+1}) = (i_t, t+1)$	Ours	No	$\frac{\sqrt{ au_{\max} au_C}}{T} + \left(\frac{\sigma^2}{T}\right)^{1/2} + \zeta^2$
		Ours	Yes	$\frac{\tau_C}{T} + \left(\frac{\sigma^2}{T}\right)^{1/2} + \left(\frac{G\tau_C}{T}\right)^{2/3} + \zeta^2$
Pure Asynchronous SGD	$(k_{t+1}, \alpha_{t+1}) = (i_t, \frac{t+1}{t} b)$	Ours	No	$rac{\sqrt{ au_{ ext{max}} au_C}}{T\sqrt{b}} + \left(rac{\sigma^2}{Tb} ight)^{1/2} + \zeta^2$
with waiting	$(a_{l+1}, a_{l+1}) (a_l, b])$	Ours	Yes	$\frac{LF_0\tau_C}{Tb} + \left(\frac{\sigma^2}{Tb}\right)^{1/2} + \left(\frac{G\tau_C}{Tb}\right)^{2/3} + \zeta^2$
		[2]	No	$\frac{LF_0\sqrt{\tau_{\max}\tau_C}}{T} + \left(\frac{\sigma^2}{T}\right)^{1/2} + \left(\frac{\zeta^2}{T}\right)^{1/2} + \left(\frac{\tau_C\zeta}{T}\right)^{1/2}$
Random Asynchronous SGD	$k_{t+1} \sim \operatorname{Unif}[n], \alpha_{t+1} = t+1$	[2]	Yes	$\frac{\tau_C}{T} + \left(\frac{\sigma^2}{T}\right)^{1/2} + \left(\frac{\zeta^2}{T}\right)^{1/2} + \left(\frac{\tau_C G}{T}\right)^{2/3}$
		Ours	Yes	$\frac{\tau_C}{T} + \left(\frac{\sigma^2}{T}\right)^{1/2} + \left(\frac{\zeta^2}{T}\right)^{1/2} + \left(\frac{\tau_C G}{T}\right)^{2/3}$
Random Asynchronous SGD	$k_{t+1} \sim \text{Unif}[n], \alpha_{t+1} = \lfloor \frac{t+1}{t} \rfloor$	[3]	Yes	$\frac{1}{T} + \left(\frac{\sigma^2}{T}\right)^{1/2} + \left(\frac{\zeta\tau_{\max}}{T}\right)^{2/3} + \left(\frac{G\tau_{\max}}{T}\right)^{2/3}$
with waiting (FedBuff)	$\cdots \iota + 1$ $\cdots \iota + 1$ $\Box b$	Ours	Yes	$\frac{\tau_C}{T} + \left(\frac{\zeta^2}{Tb}\right)^{1/2} + \left(\frac{\sigma^2}{Tb}\right)^{1/2} + \left(\frac{\tau_C G}{Tb}\right)^{2/3}$
Shuffled Asynchronous SGD [NEW]	$k_{t+1} = \chi(j), \alpha_{t+1} = t + 1$ $j - 1 = t \pmod{n}$ $\chi \text{ is a permutation of } [n]$	Ours	Yes	$\frac{n}{T} + \left(\frac{\sigma^2}{T}\right)^{1/2} + \left(\frac{\sqrt{n\zeta}}{T}\right)^{2/3} + \left(\frac{Gn}{T}\right)^{2/3}$

(a) We present the best-known rates under the same set of assumptions as we use in the analysis in \mathcal{O} -notation. (b) [1] uses delay adaptive stepsizes to get rid of the dependency on $\tau_{\rm max}$. (c) If we set $\eta_l = \frac{\gamma}{b}$, $\eta_g = b$, Q = 1 in Theorem 1 [3]. The analysis is done under the unrealistic assumption that $\{i_t\}_{t=0}^{T-1}$ are distributed uniformly at random.

Assumptions

A1 Smoothness. Each function f_i is <i>L</i> -smooth, namely	
$\ \nabla f_i(x) - \nabla f_i(y)\ \le L \ x - y\ \forall x, y \in \mathbb{R}^d.$	bour
A2 Bounded variance. Stochastic gradients $g_i(x) := \nabla f_i(x, \xi)$ are	
unbiased and have bounded variance, i.e.	
$\mathbb{E}_{\xi \sim \mathcal{D}_i}[\ \nabla f_i(x,\xi) - \nabla f_i(x)\ ^2] \le \sigma^2 \forall x \in \mathbb{R}^d.$	A 4

Notation and Convergence Theory

• \mathcal{A}_{t+1} and \mathcal{R}_t sets of assigned and received jobs at iteration t .		
• $ au_t$ (resp. $\widetilde{ au}_t$) a delay of the received (resp. assigned) gradient at	g	
iteration t .		

• τ_C a **maximum number** of active jobs, i.e.

$$\tau_C := \max_{0 \le t \le T} |\mathcal{A}_{t+1} \setminus \mathcal{R}_t|.$$

• ν^2 is a **delay variance** associated with a sequence of indices $\{i_t\}_{t>0}$ and defined as

$$\boldsymbol{\gamma} := \sum_{t=0}^{T-1} \mathbb{E} \left[\left\| \sum_{j=\pi_t}^{t-1} \nabla f_{i_j}(\boldsymbol{x}_{\pi_j}) - \nabla f(\boldsymbol{x}_{\pi_j}) \right\|^2 \right]$$

Theorem 1 (Analysis of gradient receiving process). Let Assumptions A1 and A2 hold. Let the stepsize γ satisfy inequalities $6L\gamma \leq 1$ and $20L\gamma\sqrt{\tau_{\max}\tau_C} \leq 1$, the correlation period $\tau = \left|\frac{1}{20L\gamma}\right|$, and quantities $\{\sigma_{k,\tau}^2\}_{k=0}^{\lfloor T/\tau \rfloor}$ and ν^2 are finite. Then

$$\mathbb{E}\left[\|\nabla f(\hat{x}_T)\|^2\right] \le \mathcal{O}\left(\frac{1}{\gamma T} + L\gamma\sigma^2 + L^2\gamma^2\Phi\right), \quad \Phi := \frac{1}{\lfloor T/\tau \rfloor} \sum_{k=0}^{\lfloor T/\tau \rfloor} \sigma_{k,\tau}^2 + \frac{1}{T}\nu^2.$$

Theorem 2 (Analysis of gradient assigning process). Let Assumptions A1, A2, and A4 hold. Let the stepsize γ satisfies inequalities $6L\gamma \leq 1$ and $30L\gamma \max{\{\widetilde{\tau}_{\max}, \tau_C\}} \leq 1$, the correlation period $\tau = \left|\frac{1}{30L\gamma}\right|$, quantities ${\{\widetilde{\sigma}_{k,\tau}^2\}}_{k=0}^{\lfloor T/\tau \rfloor}$ and $\widetilde{\nu}^2$ are finite. Then

 $\mathbb{E}\left[\|\nabla f(\hat{x}_T)\|^2\right] \le \mathcal{O}\left(\frac{1}{\gamma T} + L\gamma\sigma^2 + L^2\gamma^2\widetilde{\Phi} + L^2\gamma^2(\tau_C - L^2)\right)$

³Insitut Polytechnique de Paris (IP Paris)

Bounded heterogeneity. Each local gradient $\nabla f_i(x)$ satisfies the inded heterogeneity condition

 $\|\nabla f_i(x) - \nabla f(x)\|^2 \le \zeta^2, \quad \forall x \in \mathbb{R}^d.$

some results, we also need the boundedness of local gradients. **Bounded gradients.** Each local gradient $\nabla f_i(x)$ satisfies $\|\nabla f_i(x)\| \le G \quad \forall x \in \mathbb{R}^d.$

 $\tau_{\rm max}$ (resp. $\tilde{\tau}_{\rm max}$) a **maximum delay** of received (resp. assigned) gradients during the training, i.e.

$$au_{\max} := \max\left\{\max_{0 \le t \le T} \tau_t, \max_{(i,j) \in \mathcal{A}_{T+1} \setminus \mathcal{R}_T} T - j\right\}$$

• For any given correlation period $\tau \geq 1$ we successively split the set of received gradient indices $\{i_t\}_{t>0}$ into $\lceil \frac{T}{\tau} \rceil$ chunks of size τ . The **sequence correlation** $\sigma_{k\tau}^2$ within k-th period is defined as

$$_{k\tau}^{2} := \max_{0 \le j < \tau} \mathbb{E} \left[\left\| \sum_{t=k\tau}^{\min\{k\tau+j,T-1\}} \nabla f_{i_{t}}(x_{k\tau}) - \nabla f(x_{k\tau}) \right\|^{2} \right].$$

$$1)^{2}G^{2}\bigg), \quad \widetilde{\Phi} := \frac{1}{\lfloor T/\tau \rfloor} \sum_{k=0}^{\lfloor T/\tau \rfloor} \widetilde{\sigma}_{k,\tau}^{2} + \frac{1}{T} \widetilde{\nu}^{2}$$

to server end

 $=10^{-10^{-1}}$ $\sum_{n=1}^{\infty} 10^{-2}$

$$10$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

Figure 1: Comparison of pure, random, and shuffled asynchronous SGD with tuned stepsizes and full gradient computation on w7a dataset with various delay patterns. Here $n = 10, \lambda = 0.1, d = 300, m = 2505.$

tems, 2022.

Algorithm 1: AsGrad framework: General Asynchronous SGD **Input:** $x^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$, set of assigned jobs $\mathcal{A}_0 = \emptyset$, set of received jobs $\mathcal{R}_0 = \emptyset$ **Initialization:** for all jobs $(i, 0) \in \mathcal{A}_1$, the server assigns worker i to compute a stochastic gradient $g_i(x_0)$ for t = 0, 1, ..., T - 1 do Once worker i_t finishes a job $(i_t, \pi_t) \in \mathcal{A}_{t+1}$, it sends $g_{i_t}(x_{\pi_t})$ server updates $x_{t+1} = x_t - \gamma g_{i_t}(x_{\pi_t})$ and

 $\mathcal{R}_{t+1} = \mathcal{R}_t \cup \{(i_t, \pi_t)\}$ server assigns worker k_{t+1} to compute a gradient $g_{k_{t+1}}(x_{\alpha_{t+1}})$

server updates the set $\mathcal{A}_{t+2} = \mathcal{A}_{t+1} \cup \{(k_{t+1}, \alpha_{t+1})\}$

Experiments

We consider Logistic Regression problem with non-convex regular-

Each worker has a parameter s_i and spends r seconds to compute a gradient according to

References

[1] K. Mishchenko, F. Bach, M. Even, and B. Woodworth. Asynchronous SGD beats minibatch SGD under arbitrary delays. Advances in Neural Information Processing Systems, 2022.

[2] A. Koloskova, S. Stich, and M. Jaggi. *Sharper convergence* guarantees for asynchronous SGD for distributed and federated learning. Advances in Neural Information Processing Sys-

[3] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and D. Huba. Federated learning with buffered asynchronous aggregation. International Conference on Artificial Intelligence and Statistics, 2022.

[4] A. Koloskova, N. Doikov, S. U. Stich, and M. Jaggi. Shuffle SGD is always better than SGD: Improved analysis of SGD with arbitrary data orders. arXiv preprint arXiv:2305.19259, 2023.