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Problem Formulation

We want to solve the finite-sum optimization problem

• This problem has many applications in machine learning,
data science and engineering.

Decentralized Communication Network

Motivation

There is no algorithm that can achieve an optimal asymptotic
convergence rate in the decentralized distributed optimization
under assumptions A1-A2 with contractive compression and
without data heterogeneity bounds.

Contractive Compression

We say that a (possibly randomized) mapping C : Rd → Rd is a
contractive compression operator if for some constant 0 < α ≤ 1
and all x ∈ Rd it holds

E
[
∥C(x) − x∥2

]
≤ (1 − α)∥x∥2.

A classic example of contractive compression is Top-K
compressor. −2
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0
0

 ,

which preserves top K entries in magnitude. It is contractive with
α = K/d.

Table 1:Summary of convergence guarantees for decentralized methods supporting contractive compressors. We present the convergence in terms of E∥∇f (xout)∥2 ≤ ε2 for
specifically chosen xout. Here F 0 := E[f (x0) − f ∗], L and ℓ are smoothness constants, ρ is a spectral gap, and σ2 is stochastic variance bound.

Method Asymptotic Complexity Any Batches? No Extra
Assumptions?

Choco-SGD LF 0σ2

nε4 ✓
Bounded Gradients

E[∥∇fi(x, ξ)∥2] ≤ G2

BEER LF 0σ2

α2ρ3ε4
Batch size of

order σ2

αε2
✓

CEDAS LF 0σ2

nε4 ✓
Additional Unbiased

Compressor

DeepSqueeze LF 0σ2

nε4 ✓
Bounded Heterogeneity

n−1∑
i ∥∇fi(x) − ∇f (x)∥2 ≤ ζ2

DoCoM ℓF 0σ3

nε3 ✓
Sample-wise smoothness

∥gi(x) − gi(y)∥ ≤ ℓ∥x − y∥
CDProxSGT LF 0σ2

α2ρ2ε4 ✓ ✓

MoTEF LF 0σ2

nε4 ✓ ✓

Proposed Algorithm

Assumptions & Convergence Theory

(A1) Let f ⋆ := argminx∈Rdf (x) > −∞. Let f and each fi be L-smooth, i.e., for all x, y ∈ Rd and i ∈ [n]
∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥,

(A2) Let stochastic gradient oracles gi(x) : Rd → Rd for each fi be unbiased and have bounded variance, i.e., for all x ∈ Rd

E
[
gi(x)

]
= ∇fi(x), E

[
∥gi(x) − ∇fi(x)∥2

]
≤ σ2.

(A3) Let the mixing matrix W ∈ Rn×n be symmetric (W = W⊤) and doubly stochastic (W1 = 1, 1⊤W = 1⊤) with eigenvalues
1 = |λ1(W)| ≥ |λ2(W)| ≥ · · · ≥ |λn(W)| and the spectral gap ρ := 1 − |λ2(W)| ∈ (0, 1].

General Non-Convex Setting

Assume that assumptions A1-A3 hold. Then there exist ab-
solute constants cη, cλ, cγ, and τ ≤ 1 such that if we set the
parameters γ = cγαρ, λ = cλαρ3τ, η = cηL

−1αρ3τ , and choos-
ing the initial batch size Binit ≥ ⌈LF 0

σ2 ⌉, then after at most

T = O
(

σ2

nε4 + σ

αρ5/2ε3 + 1
αρ3ε2

)
LF 0 (1)

iterations of MoTEF it holds E[∥∇f (xout)∥2] ≤ ε2, where xout
is chosen uniformly at random from {x0, . . . , xT−1}, and O
suppresses absolute constants.

Convergence of Local Models

Assume that assumptions A1-A3 hold. Then with the same
choices of parameters as above, the local models {xt

i}i∈[n] con-
verge to the average model {x̄t}. In particular, after at most

T = O
(

ρ

αLε2 + ρ8σ2

nL3ε4 + ρ7/2Lσ

αL2ε3

)
F0 (2)

iterations of MoTEF, it holds that the consensus error ΩT :=
1
n

∑n
i=1 E[∥xout

i − x̄out∥2] ≤ ε. Moreover,
1
n

n∑
i=1

E[∥∇f (xout
i )∥2] ≤ 2L2ΩT + 2E[∥∇f (xout)∥2] (3)

Experiments
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Figure 1:Linear speedup of
MoTEF in number of clients n.
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Figure 2:Empirical O(
√

1/ρ) scaling of
MoTEF to reach an error of 10−3;
compared to O(1/ρ3) scaling.
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Figure 3:Performance of MoTEF changing of network topology tested on logistic
regression with non-convex regularization.
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Figure 4:Comparison of MoTEF, BEER, Choco-SGD, DSGD, D2 in terms
of communication complexity on training MLP with 1 hidden layer.
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