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Problem Formulation Table 1:Summary of convergence guarantees for decentralized methods supporting contractive compressors. We present the convergence in terms of E||V f(Xou)[|* < &2 for EXperlments
We want to solve the finite-sum optimization problem specifically chosen x,,;. Here F' := E[f(x") — f*], L and £ are smoothness constants, p is a spectral gap, and o~ is stochastic variance bound.
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There i mo slgeritdim thet e adiere sn optmel ssympiote (A1) Let f*:=argmin, g.f(x) > —o00. Let f and each f; be L-smooth, i.e., for all x,y € R* and i € [n) ; a : Y it i
convergence rate in the decentralized distributed optimization |V filx)—Vfi(y)l < Lllx—yl, Communicated bits, x101 Communicated bits, x101°
ur.lder assumptions Al-AZ with contractive compression and (A2) Let stochastic gradient oracles g'(x): RY — R? for each f; be unbiased and have bounded variance, i.e., for all x € R? Fioure 4:Comparison of MoTEF., BEER, Choco-SGD, DSGD. D2 in terms
without data heterogeneity bounds. R [ gz‘(Xﬂ —Vf, (X), I [H gz' (X) v fz(X) HZ} < 52 of communication complexity on training MLP with 1 hidden layer.
(A3) Let the mixing matrix W € R™" be symmetric (W = W) and doubly stochastic (W1 =1,1"W = 1") with eigenvalues
. . 1= |M(W)| > [ X(W)| >--- > |\ (W)| and the spectral gap p :=1— [XA(W)] € (0, 1].
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S esses absolute constants.
which preserves top K entries in magnitude. It is contractive with ~bb " Hstall

a = K/q.




