

Problem Formulation

We want to solve the finite-sum optimization problem Lower bounded $f^{\star} = \arg\min f(x)$ # clients non-convex def min $x \in \mathbb{R}^d$ # model Empirica Local loss function $f_i(x) = \mathbb{E}_{\xi \sim \mathcal{D}_i}[f_{\xi}(x)]$ risk/loss parameters

• This problem has many applications in machine learning, data science and engineering.

Decentralized Communication Network

Motivation

There is no algorithm that can achieve an optimal asymptotic convergence rate in the decentralized distributed optimization under assumptions A1-A2 with contractive compression and without data heterogeneity bounds.

Contractive Compression

We say that a (possibly randomized) mapping $\mathcal{C} \colon \mathbb{R}^d \to \mathbb{R}^d$ is a contractive compression operator if for some constant $0 < \alpha \leq 1$ and all $\mathbf{x} \in \mathbb{R}^d$ it holds

$$\mathbb{E}\left[\|\mathcal{C}(\mathbf{x}) - \mathbf{x}\|^2\right] \le (1 - \alpha) \|\mathbf{x}\|^2.$$

A classic example of contractive compression is Top-Kcompressor.

$$\begin{pmatrix} -2\\1\\1.5 \end{pmatrix} \stackrel{\text{Top-1}}{\to} \begin{pmatrix} -2\\0\\0 \end{pmatrix},$$

which preserves top K entries in magnitude. It is contractive with $\alpha = K/d.$

Towards Faster Decentralized Stochastic Optimization with Communication Compression

Rustem Islamov^{$\star 1$} Yuan Gao^{$\star 2,3$} Sebastian U. Stich²

¹University of Basel ²CISPA Helmholtz Center for Information Security ³University of Saarland *Equal contribution

Table 1:Summary of convergence guarantees for decentralized methods supporting contractive compressors. We present the convergence in terms of $\mathbb{E} \| \nabla f(\mathbf{x}_{\text{out}}) \|^2 \le \varepsilon^2$ for specifically chosen \mathbf{x}_{out} . Here $F^0 := \mathbb{E}[f(\mathbf{x}^0) - f^*]$, L and ℓ are smoothness constants, ρ is a spectral gap, and σ^2 is stochastic variance bound.

Method	Asymptotic Complexity	Any Batc
Choco-SGD	$\frac{LF^0\sigma^2}{n\varepsilon^4}$	
BEER	$\frac{LF^0\sigma^2}{\alpha^2\rho^3\varepsilon^4}$	Batch size order $\frac{\sigma}{\alpha}$
CEDAS	$\frac{LF^0\sigma^2}{n\varepsilon^4}$	
DeepSqueeze	$\frac{LF^0\sigma^2}{n\varepsilon^4}$	
DoCoM	$\frac{\ell F^0 \sigma^3}{n \varepsilon^3}$	
CDProxSGT	$rac{LF^0\sigma^2}{lpha^2 ho^2arepsilon^4}$	 Image: A start of the start of
MoTEF	$\frac{LF^0\sigma^2}{n\varepsilon^4}$	\checkmark

Proposed Algorithm

Assumptions & Convergence Theory

(A1) Let $f^* := \operatorname{argmin}_{x \in \mathbb{R}^d} f(x) > -\infty$. Let f and each f_i be L-smooth, i.e., for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and $i \in [n]$ $\|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\| \le L \|x - y\|,$

(A2) Let stochastic gradient oracles $\mathbf{g}^i(\mathbf{x}) \colon \mathbb{R}^d \to \mathbb{R}^d$ for each f_i be unbiased and have bounded variance, i.e., for all $\mathbf{x} \in \mathbb{R}^d$ $\mathbb{E}\left[\mathbf{g}^{i}(\mathbf{x})\right] = \nabla f_{i}(\mathbf{x}), \quad \mathbb{E}\left[\|\mathbf{g}^{i}(\mathbf{x}) - \nabla f_{i}(\mathbf{x})\|^{2}\right] \leq \sigma^{2}.$

(A3) Let the mixing matrix $\mathbf{W} \in \mathbb{R}^{n \times n}$ be symmetric $(\mathbf{W} = \mathbf{W}^{\top})$ and doubly stochastic $(\mathbf{W}\mathbf{1} = \mathbf{1}, \mathbf{1}^{\top}\mathbf{W} = \mathbf{1}^{\top})$ with eigenvalues $1 = |\lambda_1(\mathbf{W})| \ge |\lambda_2(\mathbf{W})| \ge \cdots \ge |\lambda_n(\mathbf{W})|$ and the spectral gap $\rho := 1 - |\lambda_2(\mathbf{W})| \in (0, 1]$.

General Non-Convex Setting

Assume that assumptions A1-A3 hold. Then there exist absolute constants $c_{\eta}, c_{\lambda}, c_{\gamma}$, and $\tau \leq 1$ such that if we set the parameters $\gamma = c_{\gamma} \alpha \rho$, $\lambda = c_{\lambda} \alpha \rho^3 \tau$, $\eta = c_{\eta} L^{-1} \alpha \rho^3 \tau$, and choosing the initial batch size $B_{\text{init}} \geq \left\lceil \frac{LF^0}{\sigma^2} \right\rceil$, then after at most

$$T = \mathcal{O}\left(\frac{\sigma^2}{n\varepsilon^4} + \frac{\sigma}{\alpha\rho^{5/2}\varepsilon^3} + \frac{1}{\alpha\rho^3\varepsilon^2}\right)LF^0 \tag{1}$$

iterations of MoTEF it holds $\mathbb{E}[\|\nabla f(\mathbf{x}_{out})\|^2] \leq \varepsilon^2$, where \mathbf{x}_{out} is chosen uniformly at random from $\{\overline{\mathbf{x}}_0,\ldots,\overline{\mathbf{x}}_{T-1}\}$, and \mathcal{O} suppresses absolute constants.

Convergence of Local Models

Assume that assumptions A1-A3 hold. Then with the same choices of parameters as above, the local models $\{\mathbf{x}_i^t\}_{i \in [n]}$ converge to the average model $\{\bar{\mathbf{x}}_t\}$. In particular, after at most

$$T = \mathcal{O}\left(\frac{\rho}{\alpha L \varepsilon^2} + \frac{\rho^8 \sigma^2}{n L^3 \varepsilon^4} + \frac{\rho^{7/2} L \sigma}{\alpha L^2 \varepsilon^3}\right) F_0 \tag{2}$$

iterations of MoTEF, it holds that the consensus error $\Omega_T \coloneqq$ $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\mathbf{x}_{i}^{\text{out}} - \bar{\mathbf{x}}_{\text{out}}\|^{2}] \leq \varepsilon.$ Moreover,

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\nabla f(\mathbf{x}_{i}^{\text{out}})\|^{2}] \leq 2L^{2} \Omega_{T} + 2\mathbb{E}[\|\nabla f(\mathbf{x}_{\text{out}})\|^{2}] \quad (3)$$

Figure 4:Comparison of MoTEF, BEER, Choco-SGD, DSGD, D2 in terms of communication complexity on training MLP with 1 hidden layer.

NeurIPS 2022.

Experiments

1:Linear speedup of **MoTEF** in number of clients n.

Figure 2:Empirical $\mathcal{O}(\sqrt{1/\rho})$ scaling of **MoTEF** to reach an error of 10^{-3} ; compared to $\mathcal{O}(1/\rho^3)$ scaling.

Figure 3:Performance of **MoTEF** changing of network topology tested on logistic regression with non-convex regularization.

References

- [1] Zhao et al., BEER: Fast O(1/T) rate for decentralized nonconvex optimization with communication compression,
- [2] Richtárik et al., Ef21: A new, simpler, theoretically better, and practically faster error feedback, NeurIPS 2021.
- [3] Yau & Wai, Docom: Compressed decentralized optimization with nearoptimal sample complexity, arXiv preprint
- arXiv:2202.00255, 2022.
- [4] Koloskova et al., An improved analysis of gradient tracking for decentralized machine learning, NeurIPS 2021.