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Problem Formulation

We want to solve a distributed (stochastic) problem:

where the constraint set is

• This problem has many applications in machine learning,
data science and engineering.

• Safety constraints play a critical role in real-world applications
such as federated reinforcement learning.

Federated Training

• Federated learning faces severe communication bottlenecks
due to the high dimensionality of model updates

Contractive Compression

(C) We say that a (possibly randomized) mapping C : Rd → Rd is
a contractive compression operator if for some constant 0 < δ ≤ 1
and all x ∈ Rd it holds

E
[
∥C(x) − x∥2

]
≤ (1 − δ)∥x∥2.

We denote the class of δ-contractive compressors as C(δ). A
classic example of contractive compression is Top-K compressor.

(−2, 1, 1.5)⊤ Top-1→ (−2, 0, 0)⊤.

It preserves top K entries in magnitude. It is contractive with
α = K/d.

Failure of Algorithms from the Smooth Setting

0 20 40 60

Iterations

0

1

2

3

f
(x
t
)
−
f

(x
∗ )

?Safe-EF
EF21
CGD

Figure 1:Non-convergence of CGD, divergence of EF21 [2] and convergence of
Safe-EF for the problem f (x) = ∥x∥1. ⋆Safe-EF coincides with EF14 [1] in this
example.

CGD: xt+1 = xt − γ

n
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C(f ′
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EF21: xt+1 = xt − γ vt, vt = 1
n

n∑
i=1

vt
i,

vt+1
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i + C(f ′
i(xt+1) − vt

i)
Example. Consider f (x) = ∥x∥1 with X = R2. For any n ≥ 1,
CGD and EF21 do not converge, i.e., for any γ > 0, t ≥ 0

CGD: f (xt) − min
x

f (x) = 1 + γ/2
EF21: f (xt) − min

x
f (x) = 1 + γ/2 + t γ.

Takeaway: “Smooth” algorithms not suitable for non-smooth.
It leads to extra challenges for federated learning.

Our Goals

Question 1: What are the limits of compressed gradient meth-
ods in the non-smooth regime?

Question 2: Can we design a provably convergent compressed
gradient method with a Top-K compressor for “non-smooth”?

Communication Protocol and Main Results

Algorithm Class:
• Centralized communication: Workers are restricted to

communicating directly with a central server only;

• Synchronous Communication: All workers begin each
iteration simultaneously;

• “Zero-respecting” Property: Non-zero entries appear through
local subgradient queries or synchronization with the server;

• Output of Algorithm: The output x̂A,t of the algorithm A
after t iterations can be expressed as any linear combination
of all previous local models.

Lower Bound

Let fi, gi are convex and ∥f ′
i(x, ξi)∥, ∥g′

i(x, ξi)∥ ≤ M . Then
there exists an instance of such problem that

E[f (x̂A,T ) − f (x∗)] ≥ Ω
(

M∥x0 − x∗∥√
δT

)
, and

E[g(x̂A,T )] ≥ Ω
(

M∥x0 − x∗∥√
δT

)
.

Key idea: Construct a “worst-case” function and account for
compression in the distributed setting. We use for all i ∈ [n]

fi(x) := C · max
1≤j≤T

xj + µ

2
∥x∥ · max

{
∥x∥; ∥x∗∥

2

}
,

gi(x) := fi(x) − min
x∈Rd

fi(x),

where C, µ > 0 are some constants.

Convergence Theorem

Let fi(x, ξi), gi(x, ξi) are convex, ∥f ′
i(x)∥, ∥g′

i(x)∥ ≤ M , and
E
[

(gi(x,ξi)−gi(x))2

σ2
fv/Nfv

]
≤ exp(1). Then the iterates of Safe-EF sat-

isfy with probability 1 − 2β for any β < 1/2

f (xT ) − f (x∗) ≤ O
(

(M∥x0 − x∗∥ + σfv/
√

Nfv)(1 + log 1/β)√
δsδT

)
,

Eg(xT ) ≤ O
(

(M∥x0 − x∗∥ + σfv/
√

Nfv)(1 + log 1/β)√
δsδT

)
,

where xT := 1
|B|
∑

t∈B xt, B := {t ∈ [T − 1] | g(xt) ≤ c}.

Main implications:
• General Claim: Design a provably convergent compressed

gradient method for distributed non-smooth optimization.
Extend it to practically relevant settings with safety
constraints and noise;

• Single-node Training: Recover the optimal rate known in
the literature extending EF14 [3];

• High-probability Analysis: The dependency on the failure
probability β is logarithmic → optimal;

• Unidirectional Compression: The rate of Safe-EF matches
established lower bound → dependency on
the compression level δ is optimal;

• Bidirectional Compression: Safe-EF — the first algorithm
provably convergent when contractive compression (C) used
in both server-to-worker and worker-to-server directions.

Algorithm 1: Safe-EF: Safe Error Feedback
Input: w0 = x0, {Ci}n

i=0, γ, c > 0, e0
i = 0

For t = 0, . . . , T − 1 do
For i = 1, . . . , n in parallel do

Send gi(xt, ξt
i) to server

end for
Send g(xt, ξt) = 1

n

∑n
i=1 gi(xt, ξt

i) to workers
For i = 1, . . . , n in parallel do

Compute ht
i = f ′

i(xt, ξt
i) if g(xt, ξt) ≤ c else g′

i(xt, ξt
i)

Send vt
i = Ci(et

i + ht
i) to server

Compute et+1
i = et

i + ht
i − vt

i

end for
Compute vt = 1

n

∑n
i=1 vt

i and wt+1 = wt − γvt

Compute xt+1 = xt + C0(wt+1 − xt)
Send C0(wt+1 − xt) to workers

end for

Experiments
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Figure 2:Objective and constraint during training Humanoid Robot Fleet. Bud-
get denotes the level below which Jc must remain to satisfy the constraint.
Here, the objective fi is

E
s,a∼π̄

[
min

{
πx(a|s)
π̄(a|s) Aπ̄

pi
(s, a), clip

(
πx(a|s)
π̄(a|s) , 1 − ϵ̃, 1 + ϵ̃

)
Aπ̄

pi
(s, a)

}]
,

where
• Aπ̄

pi
denotes the advantage in terms of cumulative rewards

• Surrogate for the constraint gi(x) is given by replacing rewards
with costs when computing the advantage

• clip(x, l, u) := max{l, min{x, u}}
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Figure 3:Left: Convergence for different number of workers. Right: Communica-
tion required to reach a desired performance for different batch samples Nfv.
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