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Problem Formulation Failure of Algorithms from the Smooth Setting Algorithm 1: Safe-EF: Safe Error Feedback
Input: v’ = 2" {C;}", v,¢>0, €} =0
We want to solve a distributed (stochastic) problem: n Fort=0,...,7—1do
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i—1 B Example. Consider f(z) = ||z||; with X = R*. For any n > 1, Compute hl = f/(2%, &) if g(2, &) < c else ¢i(a?, &)
w— R CGD and EF21 do not converge, i.e., for any v > 0, t > 0 Send v! = C;(e! + h!) to server
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where the constraint set is 0 20 40 60 ek2l: f) e fla)=1+7/2+ty. Compute v’ = %2?21 vt and Wit = w! — 0!

[terations Compute 2/ = ' + Co(w!™ — 2t)
Send Co(w!™ — ') to workers
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X:=<zeR ‘ 9(33) L= 5 E gi (37) S 0 Figure 1:Non-convergence of CGD, divergence of EF21 [2] and convergence of Takeaway: “Smooth” algorithms not suitable for non-smooth. end for
1=1 Safe-EF for the problem f(x) = ||z||;. *Safe-EF coincides with EF14 [1] in this It leads to extra challenges for federated learning.

example. Experiments

e This problem has many applications in machine learning,
data science and engineering.
e Safety constraints play a critical role in real-world applications Our Goals

—a— Safe-EF (Ours) —eo— Parallel-CRPO —— EF14 — EF21

500

such as federated reinforcement learning. L0000
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P Tp—— o Centralized communication: Workers are restricted to #Gigabytes / worker #Gigabytes / worker
@ links communicating directly with a central server only; | | Figure 2:0Objective and constraint during training Humanoid Robot Fleet. Bud-
> o Synchronous Communication: All workers begin each Let f z(xz &), 922(55 ,§') are convex, | fi(@)][, ||lgi(z)|| < M, and get denotes the level below which J, must remain to satisty the constraint.
1 \ iteration simultaneously:; E [(gi(xzfé%)/;\‘fi(aj» } < exp(1). Then the iterates of Safe-EF sat- Here, the objective f; is
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D1 — fi(x) Dy — fa(x) Dp=—fn(z) o OQutput of Algorithm: The output 2 4+ of the algorithm A | ) V00T o Agi denotes the advantage in terms of cumulative rewards
. L after ¢ iterations can be expressed as any linear combination Mlz” — 2™|| + o/ Niw)(1 +1log 1/5) e Surrogate for the constraint g;(x) is given by replacing rewards
e Federated learning faces severe communication bottlenecks , ) . .
of all previous local models. v 0501’ with costs when computing the advantage

due to the high dimensionality of model updates o clip(z,l,u) := max{l, min{z,u}}

Lower Bound
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Contractive Compression Let f;, gi are convex and || fi(z, &), |lgi(x,&")|| < M. Then Main implications: 000 — T Worken £ bs
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o General Claim: Design a provably convergent compressed
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where C', > 0 are some constants.



