

University

Safe-EF: Error Feedback for Nonsmooth Constrained Optimization

Rustem Islamov¹ Yarden As^{2,3} Ilyas Fatkhullin^{2,3}

¹University of Basel ²ETH Zürich ³ETH AI Center

Problem Formulation

We want to solve a distributed (stochastic) problem:

where the constraint set is

$$\mathcal{X} := \left\{ x \in \mathbb{R}^d \mid g(x) := \frac{1}{n} \sum_{i=1}^n g_i(x) \le 0 \right\}$$

- This problem has many applications in machine learning, data science and engineering.
- Safety constraints play a critical role in real-world applications such as federated reinforcement learning.

Federated Training

• Federated learning faces severe communication bottlenecks due to the high dimensionality of model updates

Contractive Compression

(C) We say that a (possibly randomized) mapping $\mathcal{C}: \mathbb{R}^d \to \mathbb{R}^d$ is a contractive compression operator if for some constant $0 < \delta \le 1$ and all $x \in \mathbb{R}^d$ it holds

$$\mathbb{E}\left[\|\mathcal{C}(x) - x\|^2\right] \le (1 - \delta)\|x\|^2.$$

We denote the class of δ -contractive compressors as $\mathbb{C}(\delta)$. A classic example of contractive compression is Top-K compressor.

$$(-2, 1, 1.5)^{\top} \stackrel{\text{Top-1}}{\to} (-2, 0, 0)^{\top}.$$

It preserves top K entries in magnitude. It is contractive with $\alpha = K/d$.

Failure of Algorithms from the Smooth Setting

Figure 1:Non-convergence of CGD, divergence of EF21 [2] and convergence of Safe-EF for the problem $f(x) = ||x||_1$. *Safe-EF coincides with EF14 [1] in this example.

CGD: $x^{t+1} = x^t - \frac{\gamma}{n} \sum_{i=1}^n \mathcal{C}(f_i'(x^t))$ EF21: $x^{t+1} = x^t - \gamma v^t$, $v^t = \frac{1}{n} \sum_{i=1}^n v_i^t$, $v_i^{t+1} = v_i^t + \mathcal{C}(f_i'(x^{t+1}) - v_i^t)$

Example. Consider $f(x) = ||x||_1$ with $\mathcal{X} = \mathbb{R}^2$. For any $n \geq 1$, CGD and EF21 do not converge, i.e., for any $\gamma > 0$, $t \ge 0$

 $f(x^t) - \min_{x} f(x) = 1 + \gamma/2$

 $f(x^{t}) - \min_{x} f(x) = 1 + \gamma/2 + t \gamma.$

Takeaway: "Smooth" algorithms not suitable for non-smooth. It leads to extra challenges for federated learning.

Our Goals

Question 1: What are the limits of compressed gradient methods in the non-smooth regime?

Question 2: Can we design a provably convergent compressed gradient method with a Top-K compressor for "non-smooth"?

Communication Protocol and Main Results

Algorithm Class:

- Centralized communication: Workers are restricted to communicating directly with a central server only;
- Synchronous Communication: All workers begin each iteration simultaneously;
- "Zero-respecting" Property: Non-zero entries appear through local subgradient queries or synchronization with the server;
- Output of Algorithm: The output $\hat{x}_{A,t}$ of the algorithm A after t iterations can be expressed as any linear combination of all previous local models.

Lower Bound

Let f_i, g_i are convex and $||f_i'(x, \xi^i)||, ||g_i'(x, \xi^i)|| \leq M$. Then there exists an instance of such problem that

$$\mathbb{E}[f(\hat{x}_{A,T}) - f(x^*)] \ge \Omega\left(\frac{M\|x^0 - x^*\|}{\sqrt{\delta T}}\right), \quad \text{and} \quad \mathbb{E}[g(\hat{x}_{A,T})] \ge \Omega\left(\frac{M\|x^0 - x^*\|}{\sqrt{\delta T}}\right).$$

Key idea: Construct a "worst-case" function and account for compression in the distributed setting. We use for all $i \in [n]$

$$f_i(x) := C \cdot \max_{1 \le j \le T} x_j + \frac{\mu}{2} ||x|| \cdot \max \left\{ ||x||; \frac{||x^*||}{2} \right\},\$$

$$g_i(x) := f_i(x) - \min_{x \in \mathbb{R}^d} f_i(x),$$

where $C, \mu > 0$ are some constants.

Convergence Theorem

Let $f_i(x, \xi^i)$, $g_i(x, \xi^i)$ are convex, $||f_i'(x)||$, $||g_i'(x)|| \leq M$, and $\mathbb{E}\left[\frac{(g_i(x,\xi^i)-g_i(x))^2}{\sigma_{\rm f.}^2/N_{\rm fv}}\right] \leq \exp(1)$. Then the iterates of Safe-EF satisfy with probability $1 - 2\beta$ for any $\beta < 1/2$

$$f(\overline{x}^{T}) - f(x^{*}) \leq \mathcal{O}\left(\frac{(M||x^{0} - x^{*}|| + \sigma_{\text{fv}}/\sqrt{N_{\text{fv}}})(1 + \log 1/\beta)}{\sqrt{\delta_{\text{s}}\delta T}}\right),$$

$$\mathbb{E}g(\overline{x}^{T}) \leq \mathcal{O}\left(\frac{(M||x^{0} - x^{*}|| + \sigma_{\text{fv}}/\sqrt{N_{\text{fv}}})(1 + \log 1/\beta)}{\sqrt{\delta_{\text{s}}\delta T}}\right),$$

where $\overline{x}^T := \frac{1}{|\mathcal{B}|} \sum_{t \in \mathcal{B}} x^t, \mathcal{B} := \{t \in [T-1] \mid g(x^t) \leq c\}.$

Main implications:

- General Claim: Design a provably convergent compressed gradient method for distributed non-smooth optimization. Extend it to practically relevant settings with safety constraints and noise;
- Single-node Training: Recover the optimal rate known in the literature extending EF14 [3];
- *High-probability Analysis:* The dependency on the failure probability β is logarithmic \rightarrow optimal;
- Unidirectional Compression: The rate of Safe-EF matches established lower bound \rightarrow dependency on the compression level δ is optimal;
- Bidirectional Compression: Safe-EF the first algorithm provably convergent when contractive compression (C) used in both server-to-worker and worker-to-server directions.

Algorithm 1: Safe-EF: Safe Error Feedback Input: $w^0 = x^0$, $\{C_i\}_{i=0}^n$, $\gamma, c > 0$, $e_i^0 = 0$ For t = 0, ..., T - 1 do For $i = 1, \ldots, n$ in parallel do Send $g_i(x^t, \xi_i^t)$ to server end for Send $g(x^t, \xi^t) = \frac{1}{n} \sum_{i=1}^n g_i(x^t, \xi_i^t)$ to workers For $i = 1, \ldots, n$ in parallel do Compute $h_i^t = f_i'(x^t, \xi_i^t)$ if $g(x^t, \xi^t) \leq c$ else $g_i'(x^t, \xi_i^t)$ Send $v_i^t = \mathcal{C}_i(e_i^t + h_i^t)$ to server Compute $e_i^{t+1} = e_i^t + h_i^t - v_i^t$ end for Compute $v^t = \frac{1}{n} \sum_{i=1}^n v_i^t$ and $w^{t+1} = w^t - \gamma v^t$ Compute $x^{t+1} = x^t + C_0(w^{t+1} - x^t)$ Send $\mathcal{C}_0(w^{t+1}-x^t)$ to workers end for

Experiments

Figure 2:Objective and constraint during training Humanoid Robot Fleet. Budget denotes the level below which J_c must remain to satisfy the constraint. Here, the objective f_i is

 $\mathbb{E}_{s,a\sim\bar{\pi}}\left[\min\left\{\frac{\pi_x(a|s)}{\bar{\pi}(a|s)}A_{p_i}^{\bar{\pi}}(s,a),\operatorname{clip}\left(\frac{\pi_x(a|s)}{\bar{\pi}(a|s)},1-\tilde{\epsilon},1+\tilde{\epsilon}\right)A_{p_i}^{\bar{\pi}}(s,a)\right\}\right],$

• $A_{n_i}^{\bar{\pi}}$ denotes the advantage in terms of cumulative rewards

- Surrogate for the constraint $g_i(x)$ is given by replacing rewards with costs when computing the advantage
- $\bullet \operatorname{clip}(x, l, u) := \max\{l, \min\{x, u\}\}\$

Figure 3:Left: Convergence for different number of workers. Right: Communication required to reach a desired performance for different batch samples $N_{\rm fv}$.

References

[1] Seide et al. "1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs", Interspeech, 2014.

[2] Richtárik et al., "EF21: A new, simpler, theoretically better, and practically faster error feedback", NeurIPS 2021.

[3] Karimireddy et al. "Error feedback fixes SignSGD and other gradient compression schemes", ICML 2019.