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Abstract

We propose Adaptive Compressed Gradient Descent (AdaCGD) – a novel opti-
mization algorithm for communication-efficient training of supervised machine
learning models with adaptive compression level. Our approach is inspired by
the recently proposed three point compressor (3PC) framework of Richtárik et al.
(2022), which includes error feedback (EF21), lazily aggregated gradient (LAG),
and their combination as special cases, and offers the current state-of-the-art rates
for these methods under weak assumptions. While the above mechanisms offer a
fixed compression level, or adapt between two extremes only, our proposal is to
perform a much finer adaptation. In particular, we allow the user to choose any
number of arbitrarily chosen contractive compression mechanisms, such as Top-𝐾
sparsification with a user-defined selection of sparsification levels 𝐾, or quanti-
zation with a user-defined selection of quantization levels, or their combination.
AdaCGD chooses the appropriate compressor and compression level adaptively
during the optimization process. Besides i) proposing a theoretically-grounded
multi-adaptive communication compression mechanism, we further ii) extend the
3PC framework to bidirectional compression, i.e., we allow the server to compress
as well, and iii) provide sharp convergence bounds in the strongly convex, convex
and nonconvex settings. The convex regime results are new even for several key
special cases of our general mechanism, including 3PC and EF21. In all regimes,
our rates are superior compared to all existing adaptive compression methods.

1 Introduction

Training machine learning models is computationally expensive and time-consuming. In the recent
years, researchers have tended to use increasing datasets, often distributed over several devices,
throughout the training process in order to improve the effective generalization ability of contempo-
rary machine learning frameworks(Vaswani et al., 2019). By word “device” or “node” we refer to any
gadget that can store data, compute loss values and gradients (or stochastic gradients), and communi-
cate with other different devices. For example, this distributed setting appears in federated learning
(FL) (Konečnỳ et al., 2016; McMahan et al., 2017; Lin et al., 2018). FL describes machine learning
in a setting where a substantial number of strongly heterogeneous clients attempt to cooperatively
train a model using the varied data stored on these devices without violating clients’ information
privacy(Richtárik et al., 2022). In this setting, distributed methods can be very efficient(Goyal et al.,
2017; You et al., 2019) and therefore federated frameworks have attracted tremendous attention in
recent years.

Dealing with the distributed environment, we consider optimization problem of the form

min
𝑥∈R𝑑

{︂
𝑓(𝑥) := 1

𝑛

𝑛∑︀
𝑖=1

𝑓𝑖(𝑥)

}︂
, (1)
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Algorithm 1 DCGD method with master compression

1: Input: starting point 𝑥0 ∈ R𝑑; 𝑔0, 𝑔0𝑖 ∈ R𝑑 for 𝑖 = 1, · · · , 𝑛 (known by nodes), 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖

(known by master); learning rate 𝛾 > 0, worker compressor ℳW, master compressor ℳ𝑀 .
2: for 𝑡 = 0,1,2, · · · , 𝑇 − 1 do
3: Server broadcasts 𝑔𝑡 to all workers
4: for all devices 𝑖 = 1, . . . , 𝑛 in parallel do
5: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡

6: 𝑔𝑡+1
𝑖 = ℳW(∇𝑓𝑖(𝑥

𝑡+1))

7: Communicate 𝑔𝑡+1
𝑖 to the server

8: end for
9: Server aggregates received gradient estimators 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖

10: 𝑔𝑡+1 = ℳ𝑀 (𝑔𝑡+1)
11: end for

where 𝑥 ∈ R𝑑 is the parameter vector of training model, 𝑑 is the dimensionality of the problem
(number of trainable features), 𝑛 is the number of workers/devices/nodes, and 𝑓𝑖(𝑥) is the loss
incurred by model 𝑥 on data stored on worker 𝑖. The loss function 𝑓𝑖 : R𝑑 → R often has the form
of expectation of some random function 𝑓𝑖(𝑥) := E𝜉∼𝒟𝑖 [𝑓𝜉(𝑥)] with 𝒟𝑖 being the distribution of
training data owned by worker 𝑖. In federated learning, these distributions are allowed to be different
(so-called heterogeneous case). This finite sum function form allows us to capture the distributed
nature of the problem in a very efficient way.

1.1 Communication-efficient distributed learning via gradient compression

The most effective models are frequently over-parameterized, which means that they contain more
parameters than there are training data samples(Arora et al., 2018).

In this case, distributed methods may experience communication bottleneck: the situation when the
communication cost for the workers to transfer sensitive information in joint optimization can exceed
by multiple orders of magnitude the cost of local computation(Dutta et al., 2020). One of the practical
methods to transfer information more efficiently is to apply a local compression operator (Seide
et al., 2014; Suresh et al., 2017; Konečnỳ & Richtárik, 2018) to the model’s parameters (gradients
or tensors) needs to be communicated across different clients. The compression operator could be
formalized as (possibly randomized) mapping 𝒞 : R𝑑 → R𝑑, where 𝑑 is the size of the tensor that has
to be transmitted, with the feature that transmission of compressed tensor 𝒞(𝑥) requires much less
communication cost than the transfer of initial tensor 𝑥. While compression decreases the number of
bits that are transferred during each communication cycle, it also brings in errors. As a result, the
number of rounds necessary to obtain a solution with the appropriate accuracy typically increases.
However, as the trade-off frequently appears to favor compression over no compression, compression
has been proven to be effective in practice.

Distributed Compressed Gradient Descent (DCGD) (Khirirat et al., 2018) provides the simplest and
universal mechanism for distributed communication-efficient training with compression. With the
given learning rate 𝛾, DCGD implements the following update rule

𝑥𝑡+1 = 𝑥𝑡 − 𝛾 1
𝑛

𝑛∑︀
𝑖=1

𝑔𝑡𝑖 , 𝑔𝑡𝑖 = ℳ𝑡
𝑖(∇𝑓𝑖(𝑥

𝑡)). (2)

Here, 𝑔𝑡𝑖 represents an estimated gradient, result of mapping of original dense and high-dimensional
gradient ∇𝑓𝑖(𝑥

𝑡) ∈ R𝑑 into a vector of same size that can be transferred efficiently with far fewer
bits via ℳ𝑡

𝑖 compression mechanism.

1.2 DCGD with bidirectional compression

In some cases (Tang et al., 2020; Philippenko & Dieuleveut, 2020; Fatkhullin et al., 2021) it is
desirable to add compression on the server side to have efficient communication between server and
clients in both directions. One could easily extend the general framework of DCGD to the case of
bidirectional compression. If we define the general master compression mechanism as ℳ𝑀,𝑡 and
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worker compression mechanism as ℳ𝑊,𝑡
𝑖 we could formally write the general bidirectional DCGD

algorithm as Algorithm 1.

2 Motivation and Background

The main motivation of this work is to generalize the ideas presented in (Richtárik et al., 2022) to
allow compression level evolve during the optimization process based on some local information
about client’s individual cost function.

2.1 Constant contractive compressors

The majority of methods employing gradient compression mechanisms use static compressors with
constant compression level. In this approach(Richtárik et al., 2022), one sets

ℳ𝑡
𝑖(𝑥) ≡ 𝒞(𝑥), (3)

where 𝒞 : R𝑑 → R𝑑 is a (possibly randomized) operator. There are two large classes of operators
(or compressors) that have been analyzed in the literature: i) unbiased compression operators and ii)
biased or contractive compression operators. In this work we deal with contractive compressors only.
Here we explicitly give the definition of this class.
Definition 1 (Biased or contractive compression operator). A mapping 𝒞 : R𝑑 → R𝑑 is called biased
or contractive compression operator there exists 0 < 𝛼 ≤ 1 such that

E
[︀
‖𝒞(𝑥) − 𝑥‖2

]︀
≤ (1 − 𝛼) ‖𝑥‖2, ∀𝑥 ∈ R𝑑. (4)

Rank-𝐾 (Khirirat et al., 2018) and Top-𝐾 (Alistarh et al., 2018) sparsification compressors are typical
examples of contractive compressors. Due to the biased nature of these compressors, until recently,
there was a gap between experimental and theoretical development of gradient descent methods
based on contractive compressors. Thus, during the last years, algorithmic approaches have provided
several methods of high practical importance, most notable of which is the so-called error feedback
mechanism (Seide et al., 2014), fixing a divergence issue that appeared in practice. In contrast, in the
theoretical development, until very recently, analytical studies offered weak sublinear (Stich et al.,
2018; Karimireddy et al., 2019; Horváth & Richtárik, 2021) convergence rates under, in some cases,
strong unrealistic assumptions (Richtárik et al., 2022). Recently, Richtárik et al. (2021) fixed this
by providing a novel algorithmic and theoretical development that recovers GD 𝒪(1/𝑇 ) rates, with
the analysis using standard assumptions only. Fatkhullin et al. (2021) subsequently extended the
EF21 framework by including several algorithmic and theoretical extensions, such as bidirectional
compression and client stochasticity, which makes this method of high practical interest. Despite
these advances, there are still many challenges in the theoretical understanding of these classes of
methods. One of such challenges is a lack of precise theoretical study with the strong rates for error
feedback methods in a convex setting.

2.2 Existing adaptive compressors

Using a static compression level of the compressor for all clients could limitate the optimization
framework’s capability. Indeed, compression in the FL scenario can depend on the client it is
applied on. For example, in heterogeneous hardware cases, i.e. when machines participating in
collaborative training have very different computational capabilities, adjusting the compression
level of a compressor for every client could help to reduce overall training time (Horváth et al.,
2021; Abdelmoniem & Canini, 2021). Ideally, the optimizer should be able to define the particular
compression level for each client separately based on the local information from the client.

Despite the significant practical interest in the development of such methods, there is currently very
limited research and understanding of adaptive mechanisms of this type. Only a few papers (Qu et al.,
2021; Hönig et al., 2021; Mishchenko et al., 2022) provide any convergence guarantees with explicit
rates, and most of them are designed for the specific type of compressors only, mostly quantizers. So,
in (Jhunjhunwala et al., 2021), the authors design a mechanism for adaptive change of quantization

level 𝑠𝑘 ∼
√︁

𝑓(𝑥0)
𝑓(𝑥𝑘)

of a random dithering operator (Alistarh et al., 2017). DAdaQuant (Hönig et al.,
2021) and FedDQ (Qu et al., 2021) suggest ascending and descending quantizations throughout
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Table 1 Summary of adaptive compressed methods. 𝑛 is a number of workers, 𝐿 and 𝜇 are smoothness
and strong convexity constants respectively of 𝑓𝑖 ∀𝑖 ∈ {1, . . . , 𝑛}, 𝜅 = 𝐿

𝜇 is a condition number, 𝐶𝑖s

are constants, ∆𝑥 = ‖𝑥0 − 𝑥*‖2,∆𝑓 = 𝑓(𝑥0) − 𝑓*, 𝑀1 = max{𝐿− + 𝐿+

√︁
2𝐵max

𝐴min
, 1
𝐴min

},𝑀2 =

𝐿− + 𝐿+

√︁
𝐵max

𝐴min
(see Lemma 2). str cvx = strongly convex, cvx = convex, noncvx = nonconvex.

Paper Any 𝒞? Theory?
Str cvx /
PŁ noncvx
rate

Cvx rate
General
noncvx
rate

Jhunjhunwala et al. (2021) 7 7 7 7 7
Abdelmoniem & Canini (2021) 7 7 7 7 7

Hönig et al. (2021) 7 3(1)
max{𝜅, 𝜅

2

𝑛
, 𝑛
𝜇2 }

𝑇2 7 𝒪(
𝐿Δ𝑓√

𝑇
+

𝐶1
𝑇 )

Qu et al. (2021) 7 3 7 7 𝒪(
𝐿Δ𝑓√

𝑇
)(2)

Zhao et al. (2022) 7 3 linear (3) 7 7

Mao et al. (2021) 7 3 linear (3) 7 7
Khirirat et al. (2021) 3 7 7 7 7

Mishchenko et al. (2022) 7 3(4) 7 𝒪(𝐿Δ𝑥
𝑇 +

𝜎2
*+𝜀

𝐿𝑛 ) 𝒪(
𝐿Δ𝑓
𝑇 + 𝜀

𝐿𝑛 )

THIS WORK 3 3
(︁
1 − min

{︁
𝜇

𝑀2
, 𝐴min

}︁)︁𝑇
𝒪
(︁

𝑀1
𝑇

)︁
𝒪
(︁

2Δ𝑓𝑀2+𝐶3/𝐴min
𝑇

)︁
(1) The rates, as stated in the paper, are derived from Reisizadeh et al. (2020). We consider non-local full gradient setup, i.e. 𝜎2 = 0 and
𝜏 = 1.
(2) We show the rate for non-local full gradient setup, i.e. 𝜎2 = 0 and 𝜏 = 1.
(3) Their work does not present any explicit rate.
(4) 𝜀 > 0 is a parameter of IntSGD algorithm.

the training. AQUILA (Zhao et al., 2022) and AGQ (Mao et al., 2021) build an adaptive quan-
tization on top of the Lazily Aggregated Quantized (LAQ) gradient algorithm (Sun et al., 2019).
IntSGD (Mishchenko et al., 2022) adaptively sets the scaling parameter 𝛼𝑘 of a vector plugged in a
randomized integer rounding operator. CAT S+Q (Khirirat et al., 2021) proposes an adaptive way to
choose 𝑘: the top-𝑘 elements of the gradient at iteration 𝑖, only signs of which clients send to the
server along with the gradient norm. Table 1 provides a detailed comparison of these works.

2.3 Adaptive compression via selective (lazy) aggregation

The LAG mechanism proposed by Chen et al. (2018) is an alternative way to embed adaptivity
into the framework by introducing communication ”skipping”. According to the lazy aggregation
communication mechanism, each worker 𝑖 only shares its local gradient if it is significantly different
from the last gradient shared previously. Otherwise, the worker decides to ”skip” the communication
round. In some sense, it is an adaptive mechanism that chooses between two extremes for each client:
sending a full gradient or skipping the communication round.

Richtárik et al. (2022) recently generalized this idea by introducing CLAG, which connects particular
contractive 𝐶 compressor with a pre-defined compression level with LAG mechanism. In Richtárik
et al.’s CLAG method all 𝑛 workers send the compressed gradient 𝑔0𝑖 = 𝒞(∇𝑓𝑖(𝑥

0)) for all 𝑖 ∈ [𝑛],
at the beginning of the training. The workers 𝑖 ∈ [𝑛] define 𝑔𝑡+1

𝑖 , which can be viewed as a shifted
and compressed version of the client’s gradient ∇𝑓𝑖(𝑥

𝑡+1) using the lazy aggregation rule combined
with EF21 shift

𝑔𝑡+1
𝑖 =

{︂
𝑔𝑡𝑖 + 𝒞

(︀
∇𝑓𝑖(𝑥

𝑡+1) − 𝑔𝑡𝑖
)︀
, if ‖∇𝑓𝑖(𝑥

𝑡+1) − 𝑔𝑡𝑖‖2 > 𝜁𝐷𝑡
𝑖 ,

𝑔𝑡𝑖 , otherwise
(5)

where 𝐷𝑡
𝑖 := ‖∇𝑓𝑖(𝑥

𝑡+1) −∇𝑓𝑖(𝑥
𝑡)‖2 and 𝜁 > 0 is the trigger. Trigger parameter 𝜁 controls how

frequently trigger condition will be satisfied and how often clients skip communication rounds. CLAG
method includes LAG as a special case with 𝒞 compressor being identity operator (no compression).
This approach also could be seen as adaptive which interpolates between two extremes: compressed
gradient with pre-defined compression level or entirely skipping communication.

Although both LAG and CLAG perform well in practice, their fixed and limited compression levels
could restrict their performance and make these methods sub-optimal. It is of particular practical
interest to create a more general method with evolving fine-tuned compression level individual for
every client. From the perspective of the convergence theory, one of the issues lazy methods have is
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Table 2 Comparison of available convergence guarantee results of methods employing lazy aggrega-
tion.

Method Adaptive
compression?

Bidirectional
case

Str cvx
case Cvx case PŁ

noncvx case
General
noncvx case

LAQ (Sun et al., 2019) 7 7 3 7 7 7
LENA (Ghadikolaei et al., 2021) 7 7 3 3 3 3
LAG (Richtárik et al., 2022) 7 7 3 7 3 3
CLAG (Richtárik et al., 2022) 7 7 3 7 3 3
AdaCGD (NEW, 2022) 3 3 3 3 3 3

the difficulty of determining how often communication skips occur because the trigger is conditional.
Thus, there are no theoretical studies examining the frequency of communication skips.

3 Summary of Contributions

We highlight our main contributions as follows:

∙ New class of adaptive compressors. In Richtárik et al. (2022), the authors propose the different
classes of compressors unified through a single theory. Despite the large variability of the compression
mechanisms, including the algorithms with lazy aggregation rule, the compression level in all of the
considered algorithms is pre-defined before and kept constant during the training. In this work, we
take a step further and formulate an extended class of an adaptive 3PC compressors (ada3PC) with
tunable compression levels defined by some general trigger rules. As an original 3PC compressors,
this class of compressors are very general and includes a number of specific compressors such as
AdaCGD which includes EF21 and CLAG as special cases. This method is applicable for a large class
of biased compressors, such as Top-𝐾 and Rank-𝐾 sparsification.

∙ Convergence guarantees with strong rates unified by a single 3PC theory. We provide a
strong convergence bound for strongly convex, convex, and non-convex settings. Comparing with
the adaptive methods outside the 3PC context, we provide a more elaborate theory with better
convergence rates. For AdaCGD we recover 𝒪(1/𝑇 ) rate of GD up to a certain constant in general
non-convex case. It is superior in comparison with 𝒪(1/

√
𝑇 ) rate (Hönig et al., 2021; Qu et al.,

2021) for SOTA in adaptive compression outside 3PC context. The convergence theory in a convex
set is of particular interest since due to its novelty even in the case of 3PC for some key cases of
AdaCGD, such as EF21 and CLAG. In other words, it is a new SOTA result for the error-feedback
method in the convex setting.

∙ Extension of 3PC theory with bidirectional compression. We extend 3PC methods with bidirec-
tional compression i.e., we allow the server to compress as well.

Table 2 compares AdaCGD with other described in the literature lazy algorithms.

4 Ada3PC: A Compression-Adaptive 3PC Method

4.1 3PC compressor

Richtárik et al. (2022) introduces the general concept of three point compressors. Here we provide its
formal definition for consistency:

Definition 2. We say that a (possibly randomized) map 𝒞ℎ,𝑦(𝑥) : R𝑑⏟ ⏞ 
ℎ∈

× R𝑑⏟ ⏞ 
𝑦∈

× R𝑑⏟ ⏞ 
𝑥∈

→ R𝑑 is a

three point compressor (3PC) if there exist constants 0 < 𝐴 ≤ 1 and 𝐵 ≥ 0 such that the following
relation holds for all 𝑥, 𝑦, ℎ ∈ R𝑑

E
[︀
‖𝒞ℎ,𝑦(𝑥) − 𝑥‖2

]︀
≤ (1 −𝐴)‖ℎ− 𝑦‖2 + 𝐵‖𝑥− 𝑦‖2. (6)

Authors show that EF21 compression mechanism satisfies Definition 2. Let 𝒞 : R𝑑 → R𝑑 be a
contractive compressor with contraction parameter 𝛼, and define

𝒞EF
ℎ,𝑦(𝑥) := ℎ + 𝒞(𝑥− ℎ). (7)
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If we use this mapping to define a compression mechanism ℳ𝑡
𝑖 via (2) within DCGD, we obtain the

EF21 method.

Another variant of 3PC compressors introduced in (Richtárik et al., 2022) is CLAG compressor. Let
𝒞 : R𝑑 → R𝑑 be a contractive compressor with contraction parameter 𝛼. Choosing a trigger 𝜁 > 0,
authors define the CLAG rule

𝒞CL
ℎ,𝑦(𝑥) :=

{︂
ℎ + 𝒞(𝑥− ℎ), if ‖𝑥− ℎ‖2 > 𝜁‖𝑥− 𝑦‖2,
ℎ, otherwise,

(8)

If we employ this mapping into DCGD method (2) as communication mechanism ℳ𝑡
𝑖, we obtain

CLAG. It includes LAG compressor 𝒞L as a special case when compressor 𝒞 is identity.

4.2 Adaptive 3PC compressor

We are now ready to introduce the Adaptive Three Point (Ada3PC) Compressor.
Definition 3 (Ada3PC compressor). Let 𝒞1, 𝒞2, . . . , 𝒞𝑚 be 3PC compressors: 𝒞𝑖 : R3𝑑 → R𝑑 for all
𝑖. Let 𝑃1, 𝑃2, . . . , 𝑃𝑚−1 be conditions depending on ℎ, 𝑦, 𝑥, i.e. 𝑃𝑗 : R𝑑⏟ ⏞ 

ℎ∈

× R𝑑⏟ ⏞ 
𝑦∈

× R𝑑⏟ ⏞ 
𝑥∈

→ {0, 1}

for all 𝑗. Then, the adaptive 3PC compressor, associated with above 3PC compressors and conditions,
is defined as follows:

𝒞ad
ℎ,𝑦(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝒞1
ℎ,𝑦(𝑥) if 𝑃1(ℎ, 𝑦, 𝑥),

𝒞2
ℎ,𝑦(𝑥) else if 𝑃2(ℎ, 𝑦, 𝑥),

. . . ,

𝒞𝑚−1
ℎ,𝑦 (𝑥) else if 𝑃𝑚−1(ℎ, 𝑦, 𝑥),

𝒞𝑚
ℎ,𝑦(𝑥) otherwise.

(9)

Ada3PC compressor first finds the smallest index 𝑗 for which 𝑃𝑗(ℎ, 𝑦, 𝑥) = 1 (if such index does not
exist, we set 𝑗 = 𝑚). Then, Ada3PC applies 𝒞𝑗 compressor on vector 𝑥.

4.3 Adaptive Compressed Gradient Descent

There are many ways how to define meaningful and practical compressors in the context of the
adaptive 3PC framework. Here we provide one particular, perhaps the simplest scheme, which we
define as AdaCGD. In this scheme we have a set of 𝑚 EF21 compressors {𝒞EF ,𝑗

ℎ,𝑦 (𝑥)}𝑗∈1...𝑚 sorted
in order from the highest compression level to the lowest, i.e. 𝛼1 ≤ 𝛼2 . . . ≤ 𝛼𝑚, where 𝛼𝑗 is a
corresponding contractive parameter of the 𝑗-th compressor. For example, if we use Top-𝐾 in 𝒞EF

ℎ,𝑦

compressors, first and last indices correspond to the compressors with the smallest and the largest 𝐾,
respectively. We choose the first compressor, i.e. with the strongest compression, which satisfies a
trigger rule. We design the 𝑗-th trigger rule following an intuition of lazy aggregation rule:

𝑃𝑗 := ‖𝑥− 𝒞EF ,𝑗
ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥− 𝑦‖2. (10)

As in the original LAG rule, the left side of (10) presents the difference between the true gradient and
its estimate, while the right side compares gradient differences on neighboring iterations.The key
difference of (10) trigger from LAG and CLAG rule (5) is that the left side of this trigger condition
depends explicitly from the level of compression. This feature is essential as it enables the desired
rule-based compressor selection. Altogether, we can define AdaCGD compressor formally.

Definition 4 (AdaCGD compressor). Given the set of 𝑚 EF21 compressors {𝒞EF ,𝑗
ℎ,𝑦 (𝑥)}𝑗∈1...𝑚,

sorted in descending order of compression level and 𝜁 ≥ 0, adaptive AdaCGD compressor is defined
with a switch condition as follows:

𝒞AC
ℎ,𝑦(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ℎ if ‖𝑥− ℎ‖2 ≤ 𝜁‖𝑥− 𝑦‖2,
𝒞EF ,1
ℎ,𝑦 (𝑥) else if ‖𝑥− 𝒞EF ,1

ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥− 𝑦‖2,
. . . ,

𝒞EF ,𝑚−1
ℎ,𝑦 (𝑥) else if ‖𝑥− 𝒞EF ,𝑚−1

ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥− 𝑦‖2,
𝒞EF ,𝑚
ℎ,𝑦 (𝑥) otherwise.

(11)
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If 𝒞EF ,𝑚
ℎ,𝑦 uses Top-𝑑 compression, i.e., identity operator, AdaCGD is an adaptive compressor com-

posed of the whole spectrum of compressors from full compression, i.e., communication ”skip”, to
zero compression, i.e., sending full gradient. Since standalone ”skip” connection is clearly not 3PC
operator, it may not be obvious that AdaCGD is a special case of Ada3PC. For this reason, here we
provide the following lemma:
Lemma 1. AdaCGD is a special case of Ada3PC compressor.

It is easy to see that if 𝜁 = 0 AdaCGD reduces to EF21. Similarly, CLAG is a special case of AdaCGD
when 𝑚 = 1.

5 Theory

In this section, we present theoretical convergence guarantees for Algorithm 1 with Ada3PC com-
pressors in two new cases presented in Table 2. The results for general and PŁ nonconvex cases can
be found in the appendix.

5.1 Assumptions

To get convergence rates of Algorithm 1, we rely on standard assumptions.
Assumption 1. The functions 𝑓1, . . . , 𝑓𝑛 : R𝑑 → R are convex, i.e.

𝑓𝑖(𝑥) − 𝑓𝑖(𝑦) − ⟨∇𝑓𝑖(𝑦), 𝑥− 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ R𝑑,∀𝑖. (12)

Assumption 2. The function 𝑓 : R𝑑 → R is 𝐿−-smooth, i.e.

‖∇𝑓(𝑥) −∇𝑓(𝑦)‖ ≤ 𝐿−‖𝑥− 𝑦‖, ∀𝑥, 𝑦 ∈ R𝑑. (13)

Assumption 3. There exists 𝐿+ > 0 such that 1
𝑛

∑︀𝑛
𝑖=1 ‖∇ 𝑓𝑖(𝑥) − ∇𝑓𝑖(𝑦)‖2 ≤ 𝐿2

+‖𝑥 − 𝑦‖2 for
all 𝑥, 𝑦 ∈ R𝑑. Let 𝐿+ be the smallest such number.

We borrow {𝐿−, 𝐿+} notation from (Szlendak et al., 2022). Assumption 3 avoids a stronger
assumption on Lipschitz smoothness of individual functions 𝑓𝑖. Moreover, one can easily prove that
𝐿− ≤ 𝐿+.

The next assumption is standard for analysis of practical methods (Ahn et al., 2020), Rajput et al.
(2020). However, compared to previous works, we require a more general version.
Assumption 4. We assume that there exists a constant Ω > 0 such that E[‖𝑥𝑡 − 𝑥*‖2] ≤ Ω2, where
𝑥𝑡 is any iterate generated by Algorithm 1.
Assumption 5. The functions 𝑓1, . . . , 𝑓𝑛 are differentiable. Moreover, 𝑓 is bounded from below by
an infimum 𝑓 inf ∈ R, i.e. 𝑓(𝑥) ≥ 𝑓 inf for all 𝑥 ∈ R𝑑.

5.2 Adaptive 3PC is a 3PC compressor

While this may not be obvious at first glance, Adaptive 3PC compressor itself belongs to the class of
3PC compressors. We formalize this statement in the following lemma.
Lemma 2. Let 𝒞ad be an adaptive 3PC compressor. Let {𝒞𝑖}𝑚𝑖=1 be 3PC compressors associated
with 𝒞ad, i.e. for all 𝑖 there exists constants 0 < 𝐴𝑖 ≤ 1 and 𝐵𝑖 ≥ 0, such that for all ℎ, 𝑦, 𝑥 ∈ R𝑑

E‖𝐶𝑖
ℎ,𝑦(𝑥) − 𝑥‖2 ≤ (1 −𝐴𝑖)‖ℎ− 𝑦‖2 + 𝐵𝑖‖𝑥− 𝑦‖2.

Then, 𝒞ad is a 3PC compressor with constants 𝐴min := min{𝐴1, . . . , 𝐴𝑚} and 𝐵max :=
max{𝐵1, . . . , 𝐵𝑚}.

Proof. Let us fix ℎ, 𝑦, 𝑥 ∈ R𝑑 and let 𝑗 be the index, such that 𝑃𝑖(ℎ, 𝑦, 𝑥) = 0 for all 𝑖 < 𝑗 and, if
𝑗 < 𝑚, 𝑃𝑗(ℎ, 𝑦, 𝑥) = 1. Then,

E‖𝒞ad
ℎ,𝑦(𝑥) − 𝑥‖2 = E‖𝒞𝑗

ℎ,𝑦(𝑥) − 𝑥‖2
(6)
≤ (1 −𝐴𝑗)‖ℎ− 𝑦‖2 + 𝐵𝑗‖𝑥− 𝑦‖2

≤ (1 −𝐴min)‖ℎ− 𝑦‖2 + 𝐵max‖𝑥− 𝑦‖2.
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In the definition of Ada3PC compressor, we never specify what conditions 𝑃𝑖s are. In fact, they are
completely arbitrary! This enables us to build infinitely many new compressors out of few notable
examples, presented in (Richtárik et al., 2022).

5.3 Convergence

In this subsection, we show how assumptions we make about minimized functions and compressors
affect the convergence rate of Algorithm 1.

Convergence for convex functions. The first result assumes that ℳW in Algorithm 1 is a 3PC
compressor, ℳM is an identity compressor: ℳM(𝑥) = 𝑥 ∀𝑥 ∈ R𝑑.
Theorem 5. Let Assumptions 1, 2, 3 and 4 hold. In Algorithm 1, assume ℳW is a 3PC compressor,

ℳM is an identity compressor, and the stepsize 𝛾 satisfies 0 < 𝛾 ≤ 1/𝑀 , where 𝑀 = 𝐿−+𝐿+

√︁
2𝐵
𝐴 .

Then, for any 𝑇 ≥ 1 we have

E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥⋆) ≤ max

{︁
1
𝛾 ,

1
𝐴

}︁
2(Ω2+Φ0)

𝑇 ,

where Φ𝑡 := 𝑓(𝑥𝑡) − 𝑓(𝑥⋆) + 𝛾
𝐴

1
𝑛

∑︀𝑛
𝑖=1 ‖∇𝑓𝑖(𝑥

𝑡) − 𝑔𝑡𝑖‖
2 for any 𝑡 ≥ 0.

The theorem combined with Lemma 2 implies the following fact.
Corollary 1. Let the assumptions of Theorem 5 hold, assume ℳW is an Ada3PC compressor, ℳM is
an identity compressor, and choose the stepsize 𝛾 = 1

𝐿−+𝐿+

√︁
2𝐵max
𝐴min

. Then, for any 𝑇 ≥ 1 we have

E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥*) ≤ max

{︁
𝐿− + 𝐿+

√︁
2𝐵max

𝐴min
, 1
𝐴min

}︁
2(Ω2+Φ0)

𝑇 .

Thus, to achieve E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥*) ≤ 𝜀 for some 𝜀 > 0, the Ada3PC method requires

𝑇 = 𝒪
(︁

max
{︁
𝐿− + 𝐿+

√︁
2𝐵max

𝐴min
, 1
𝐴min

}︁
2(Ω2+Φ2

0)
𝜀

)︁
iterations.

Convergence for bidirectional method. Here, we analyze the case when meaningful compressors
applied on both communication directions, i.e., both ℳM and ℳW are 3PC compressors.
Theorem 6. Let Assumptions 3 and 5 hold. Let ℳM and ℳW be 3PC compressors and the stepsize
in Algorithm 1 be set as

0 < 𝛾 ≤ 1

𝐿− + 𝐿+

√︂
6𝐵M(𝐵W+1)

𝐴M + 2𝐵W

𝐴M

(︁
1 + 3𝐵M(2−𝐴W)

𝐴M

)︁ . (14)

Fix 𝑇 and let �̂�𝑇 be chosen uniformly from {𝑥0,𝑥1, · · · ,𝑥𝑇−1} uniformly at random. Then

E
[︁⃦⃦

∇𝑓(�̂�𝑇 )
⃦⃦2]︁ ≤ 2Ψ0

𝛾𝑇 . (15)

where Ψ𝑡 = 𝑓(𝑥𝑡) − 𝑓 inf + 𝛾
𝐴M ‖𝑔𝑡 − 𝑔𝑡‖2 + 𝛾

𝐴W

(︁
1 + 3𝐵M(2−𝐴W)

𝐴M

)︁
1
𝑛

∑︀𝑛
𝑖=1 ‖𝑔𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)‖2 for
any 𝑡 ≥ 0.

In the theorem, superscripts “M” and “W” denote master and worker compressor parameters, respec-
tively. Theorem 6 implies the following corollary.
Corollary 2. Let the assumptions of Theorem 6 hold, assume ℳM and ℳW are Ada3PC compressors
and the stepsize

𝛾 = 1

𝐿−+𝐿+

√︃
6𝐵M

max(𝐵W
max+1)

𝐴M
min

+
2𝐵W

max
𝐴M

min

(︂
1+

3𝐵M
max(2−𝐴W

min
)

𝐴M
min

)︂ .
Fix 𝑇 and let �̂�𝑇 be chosen uniformly from {𝑥0,𝑥1, · · · ,𝑥𝑇−1} uniformly at random. Then, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇 )
⃦⃦2]︁ ≤ 2Ψ0

(︃
𝐿−+𝐿+

√︃
6𝐵M

max(𝐵W
max+1)

𝐴M
min

+
2𝐵W

max
𝐴M

min

(︂
1+

3𝐵M
max(2−𝐴W

min
)

𝐴M
min

)︂)︃
𝑇 .
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Thus, to achieve E
[︀
‖∇𝑓(�̂�𝑇 )

]︀
‖2 ≤ 𝜀2 for some 𝜀 > 0, Algorithm 1 requires

𝑇 = 𝒪

⎛⎜⎝ 2Ψ0

(︃
𝐿−+𝐿+

√︃
6𝐵M

max(𝐵W
max+1)

𝐴M
min

+
2𝐵W

max
𝐴M

min

(︂
1+

3𝐵M
max(2−𝐴W

min
)

𝐴M
min

)︂)︃
𝑇

⎞⎟⎠
iterations.

6 Experiments

In this work we use the similar setup described in (Richtárik et al., 2022), namely we aim to solve
logistic regression problem with non-convex regularizer:

min
𝑥∈R𝑑

[︃
𝑓(𝑥) := 1

𝑁

𝑁∑︀
𝑖=1

log(1 + 𝑒−𝑦𝑖𝑎
⊤
𝑖 𝑥) + 𝜆

𝑑∑︀
𝑗=1

𝑥2
𝑗

1+𝑥2
𝑗

]︃
,

where 𝑎𝑖 ∈ R𝑑, 𝑦𝑖 ∈ {−1, 1} are the training data and labels, and 𝜆 > 0 is a regularization parameter,
which is fixed to 𝜆 = 0.1. In training we use LIBSVM Chang & Lin (2011) datasets phishing, a1a,
a9a. Each dataset has been split into 𝑛 = 20 equal parts, each representing a different client.

Figure 1: Comparison of LAG, CLAG, EF21 and GD with AdaCGD on phishing dataset. 1×, 2×, 4×
(and so on) indicates the multiplication factor we use for the optimal stepsizes predicted by theory.

Figure 1 compares AdaCGD with other 3PC methods. We fine-tune the stepsize of each considered
algorithm with (20, 21, . . . , 28) multiples of corresponding theoretical stepsize. As contractive
compressor we use Top-𝑘 operator. For EF21 and CLAG we use top-1 compressor, which usually
the best in practice for these methods. In the experiments, AdaCGD is shown to be comparable and
in some cases superior to CLAG and always superior to LAG. In other words, AdaCGD efficiently
complements CLAG and other 3PC methods. Additional experiments and details are available in the
appendix.

7 Discussion and Limitations

The main limitations of the work are assumptions we make upon functions 𝑓𝑖 of the problem 1. But,
on the other hand, these assumptions govern the convergence rates we report: for example, we cannot
show linear rate for convex functions due to the fundamental lower bound (Nesterov et al., 2018).

Another limitation comes from the analysis of Bidirectional 3PC algorithm (Theorem 6). We show
the analysis only for general nonconvex functions.
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Konečnỳ, J. and Richtárik, P. Randomized distributed mean estimation: Accuracy vs. communication.
Frontiers in Applied Mathematics and Statistics, 4:62, 2018. (Cited on 2)
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APPENDIX
In Appendix A,we state the basic facts needed for detailed proofs of the propositions. In Appendix B,
we provide the proofs missing in the main part of the paper. Appendix C contains experimental
details and extra experiments. We briefly discuss the main limitations of the paper in Appendix D.
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A Basic facts

We start the appendix with common math facts. Lemmas 3 and 4 present classic Cauchy-Schwartz
inequality for vectors in metric space and random variables in probabilistic space, respectively.
Lemma 5 shows a classic upper bound on quadratics. Lemma 6 provides a sufficient condition that
ensures a quadratic inequality appearing in our convergence proofs holds.
Lemma 3 (Cauchy-Schwartz inequality for arbitrary vectors). Let 𝑥, 𝑦 ∈ R𝑑 be arbitrary vectors.
Then, the following inequality holds

|⟨𝑥, 𝑦⟩| ≤ ‖𝑥‖‖𝑦‖, (16)

where ⟨·, ·⟩ and ‖ · ‖ denote the inner product and the induced norm, respectively.

Lemma 4 (Cauchy-Schwartz inequality for random variables; section 6.2.4 of (Pishro-Nik, 2014)).
For any two random variables 𝑋 and 𝑌 , we have

|E[𝑋𝑌 ]| ≤
√︀

E[𝑋2]E[𝑌 2], (17)

where equality holds if and only if 𝑋 = 𝛼𝑌 , for some constant 𝛼 ∈ R.

Lemma 5. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ R𝑑 be arbitrary vectors. Then, the following inequalities hold

‖𝑎− 𝑏‖2 ≤ 2(‖𝑎− 𝑐‖2 + ‖𝑐− 𝑏‖2), (18)

‖𝑎− 𝑏‖2 ≤ 3(‖𝑎− 𝑐‖2 + ‖𝑐− 𝑑‖2 + ‖𝑑− 𝑏‖2). (19)
Lemma 6 (Lemma 5 of (Richtárik et al., 2021)). If 0 < 𝛾 ≤ 1√

𝑎+𝑏
, then 𝑎𝛾2 + 𝑏𝛾 ≤ 1. Moreover,

the bound is tight up to the factor of 2 since 1√
𝑎+𝑏

≤ min{ 1√
𝑎
, 1
𝑏} ≤ 2√

𝑎+𝑏
.
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B Proofs for Sections 4 and 5

B.1 Lemma 1

At first glance, AdaCGD does not seem to be an Ada3PC compressor. However, we can construct an
Ada3PC compressor, which is equivalent to AdaCGD.
Lemma 1. AdaCGD is a special case of Ada3PC compressor.

Proof. Let us consider the following Ada3PC compressor constructed from one LAG compressor and
𝑚 EF21 compressors.

𝒞ℎ,𝑦(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝒞LAG
ℎ,𝑦 =

{︂
ℎ if ‖𝑥− ℎ‖2 ≤ 𝜁‖𝑥− 𝑦‖2,
𝑥 otherwise.

if ‖𝑥− ℎ‖2 ≤ 𝜁‖𝑥− 𝑦‖2,

𝒞EF ,1
ℎ,𝑦 (𝑥) else if ‖𝑥− 𝒞EF ,1

ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥− 𝑦‖2,
. . . ,

𝒞EF ,𝑚−1
ℎ,𝑦 (𝑥) else if ‖𝑥− 𝒞EF ,𝑚−1

ℎ,𝑦 (𝑥)‖2 ≤ 𝜁‖𝑥− 𝑦‖2,
𝒞EF ,𝑚
ℎ,𝑦 (𝑥) otherwise.

If ‖𝑥− ℎ‖2 ≤ 𝜁‖𝑥− 𝑦‖2, then 𝒞ℎ,𝑦 applies the LAG compressor to 𝑥. This LAG compressor in turn
outputs ℎ, as it does 𝒞AC

ℎ,𝑦 for the same condition. If the opposite is true, i.e., ‖𝑥− ℎ‖2 > 𝜁‖𝑥− 𝑦‖2,
𝒞ℎ,𝑦 checks the same conditions and chooses the same compressor as 𝒞AC

ℎ,𝑦 . Thus, 𝒞AC
ℎ,𝑦 is equivalent

to Ada3PC compressor 𝒞ℎ,𝑦 .

B.2 Theorem 5

The proof of Theorem 5 requires several auxiliary results. Lemma 7 states the descent lemma typical
for the analysis of biased compressors. Lemma 8 shows how individual 3PC compressors, applied at
clients, affect the aggregated divergence of gradient estimates from gradients. Lemma 9 presents a
technical upper bound on Lyapunov function Ψ𝑡.
Lemma 7 (Lemma 2 of (Li et al., 2021)). Suppose the function 𝑓 is 𝐿−-smooth and 𝑥𝑡+1 = 𝑥𝑡−𝛾𝑔𝑡,
where 𝑔𝑡 ∈ R𝑑 is any vector, and 𝛾 > 0 is any scalar. Then we have

𝑓(𝑥𝑡+1) − 𝑓(𝑥𝑡) ≤ −𝛾

2
‖∇𝑓(𝑥𝑡)‖2 −

(︂
1

2𝛾
− 𝐿−

2

)︂
‖𝑥𝑡+1 − 𝑥𝑡‖2 +

𝛾

2
‖𝑔𝑡 −∇𝑓(𝑥𝑡)‖2. (20)

Lemma 8 (Lemma B.3 of (Richtárik et al., 2022)). Let Assumption 3 hold. Consider Algorithm 1
with 3PC compressor ℳW and identity compressor ℳM. Then for all 𝑡 ≥ 0 the sequence

𝐺𝑡 =
1

𝑛

𝑛∑︁
𝑖=1

‖∇𝑓𝑖(𝑥
𝑡) − 𝑔𝑡𝑖‖2 (21)

satisfies
E
[︀
𝐺𝑡+1

]︀
≤ (1 −𝐴)E

[︀
𝐺𝑡
]︀

+ 𝐵𝐿2
+E
[︀
‖𝑥𝑡+1 − 𝑥𝑡‖2

]︀
, (22)

where 𝐴 and 𝐵 are parameters of ℳW.
Lemma 9. Let Assumption 1 hold. Let Lyapunov function Ψ𝑡 := 𝑓(𝑥𝑡) − 𝑓* + 𝛾

𝐴𝐺𝑡. Then, for any
𝑡 ≥ 0, the following inequality holds

EΨ𝑡 ≤
√︂(︁

E [‖∇𝑓(𝑥𝑡)‖2] +
𝛾

𝐴
E𝐺𝑡

)︁(︁
E [‖𝑥𝑡 − 𝑥⋆‖2] +

𝛾

𝐴
E [𝐺𝑡]

)︁
, (23)

where 𝑥* is any point belonging to Argmin 𝑓(𝑥).

Proof. By definition of convexity we get

EΨ𝑡 = E𝑓(𝑥𝑡) − 𝑓* +
𝛾

𝐴
E𝐺𝑡

(12)
≤ E⟨∇𝑓(𝑥𝑡),𝑥𝑡 − 𝑥⋆⟩ +

𝛾

𝐴
E𝐺𝑡

= E
⟨[︂

∇𝑓(𝑥𝑡),

√︂
𝛾

𝐴
E𝐺𝑡

]︂
,

[︂
𝑥𝑡 − 𝑥*,

√︂
𝛾

𝐴
E𝐺𝑡

]︂⟩
.
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By applying Cauchy-Schwartz inequality on vectors and random variables we finish the proof

E
⟨[︂

∇𝑓(𝑥𝑡),

√︂
𝛾

𝐴
E𝐺𝑡

]︂
,

[︂
𝑥𝑡 − 𝑥*,

√︂
𝛾

𝐴
E𝐺𝑡

]︂⟩
(16)
≤ E

[︂√︂
‖∇𝑓(𝑥𝑡)‖2 +

𝛾

𝐴
E𝐺𝑡

√︂
‖𝑥𝑡 − 𝑥⋆‖2 +

𝛾

𝐴
E𝐺𝑡

]︂
(17)
≤
√︂(︁

E [‖∇𝑓(𝑥𝑡)‖2] +
𝛾

𝐴
E𝐺𝑡

)︁(︁
E [‖𝑥𝑡 − 𝑥⋆‖2] +

𝛾

𝐴
E [𝐺𝑡]

)︁
.

Now we are ready to prove the main theorem.

Theorem 5. Let Assumptions 1, 2, 3 and 4 hold. Assume the stepsize 𝛾 of algorithm satisfies

0 < 𝛾 ≤ 1/𝑀 , where 𝑀 = 𝐿− + 𝐿+

√︁
2𝐵
𝐴 . Then, for any 𝑇 ≥ 0 we have

E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥⋆) ≤ max

{︂
1

𝛾
,

1

𝐴

}︂
2(Ω2 + Ψ0)

𝑇
.

Proof. Combining Lemma 7, Jensen’s inequality , we get

𝑓(𝑥𝑡+1) − 𝑓(𝑥𝑡) ≤ −𝛾

2
‖∇𝑓(𝑥𝑡)‖2 −

(︂
1

2𝛾
− 𝐿−

2

)︂
‖𝑥𝑡+1 − 𝑥𝑡‖2 +

𝛾

2

⃦⃦⃦⃦
⃦ 1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡𝑖 −
1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖(𝑥
𝑡)

⃦⃦⃦⃦
⃦
2

≤ −𝛾

2
‖∇𝑓(𝑥𝑡)‖2 −

(︂
1

2𝛾
− 𝐿−

2

)︂
‖𝑥𝑡+1 − 𝑥𝑡‖2 +

𝛾

2

1

𝑛

𝑛∑︁
𝑖=1

‖𝑔𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)‖2

= −𝛾

2
‖∇𝑓(𝑥𝑡)‖2 −

(︂
1

2𝛾
− 𝐿−

2

)︂
‖𝑥𝑡+1 − 𝑥𝑡‖2 +

𝛾

2
𝐺𝑡.

(24)
Now applying Equation (24) and Lemma 8 on the difference of Lyapunov functions, we obtain

E
[︀
Ψ𝑡+1

]︀
− E

[︀
Ψ𝑡
]︀

= E
[︀
𝑓(𝑥𝑡+1) − 𝑓(𝑥𝑡)

]︀
+

𝛾

𝐴
E
[︀
𝐺𝑡+1

]︀
− 𝛾

𝐴
E
[︀
𝐺𝑡
]︀

(24)
≤ −𝛾

2
E
[︀
‖∇𝑓(𝑥𝑡)‖2

]︀
−
(︂

1

2𝛾
− 𝐿−

2

)︂
E
[︀
‖𝑥𝑡+1 − 𝑥𝑡‖2

]︀
+

𝛾

2
E
[︀
𝐺𝑡
]︀

+
𝛾

𝐴
E
[︀
𝐺𝑡+1

]︀
− 𝛾

𝐴
E
[︀
𝐺𝑡
]︀

(22)
≤ −𝛾

2
E
[︀
‖∇𝑓(𝑥𝑡)‖2

]︀
−
(︂

1

2𝛾
− 𝐿−

2

)︂
E
[︀
‖𝑥𝑡+1 − 𝑥𝑡‖2

]︀
+
𝛾

𝐴

[︀
(1 −𝐴)E[𝐺𝑡] + 𝐵𝐿2

+E‖𝑥𝑡+1 − 𝑥𝑡‖2 − E[𝐺𝑡]
]︀
.

Rearranging the term, we get

E
[︀
Ψ𝑡+1

]︀
− E

[︀
Ψ𝑡
]︀

≤ −𝛾

2

[︀
‖∇𝑓(𝑥𝑡)‖2

]︀
−
(︂

1

2𝛾
− 𝐿−

2
−

𝛾𝐵𝐿2
+

𝐴

)︂
E
[︀
‖𝑥𝑡+1 − 𝑥𝑡‖2

]︀
− 𝐴

2

𝛾

𝐴
E
[︀
𝐺𝑡
]︀
.

We further note that

1

2𝛾
− 𝐿−

2
−

𝛾𝐵𝐿2
+

𝐴
≥ 0 ⇔ 𝐿2

+

2𝐵

𝐴
𝛾2 + 𝐿−𝛾 ≤ 1

𝐿𝑒𝑚𝑚𝑎 6⇐ 𝛾 ≤ 1

𝐿− + 𝐿+

√︁
2𝐵
𝐴

.

Appropriately chosen stepsize gives

E
[︀
Ψ𝑡+1

]︀
− E

[︀
Ψ𝑡
]︀
≤ −min

{︂
𝛾

2
,
𝐴

2

}︂(︁
E
[︀
‖∇𝑓(𝑥𝑡)‖2

]︀
+

𝛾

𝐴
E
[︀
𝐺𝑡
]︀)︁

.
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Rearranging the terms, we have

E
[︀
‖∇𝑓(𝑥𝑡)‖2

]︀
+

𝛾

𝐴
E
[︀
𝐺𝑡
]︀
≤

E [Ψ𝑡] − E
[︀
Ψ𝑡+1

]︀
min

{︀
𝛾
2 ,

𝐴
2

}︀ . (25)

from what we deduce that E
[︀
Ψ𝑡+1

]︀
≤ E [Ψ𝑡].

Using Lemma 9 and (25), we have

EΨ𝑡+1EΨ𝑡 ≤
(︀
EΨ𝑡

)︀2 ≤
(︁
E
[︀
‖∇𝑓(𝑥𝑡)‖2

]︀
+

𝛾

𝐴
E𝐺𝑡

)︁(︁
E
[︀
‖𝑥𝑡 − 𝑥⋆‖2

]︀
+

𝛾

𝐴
E
[︀
𝐺𝑡
]︀)︁

≤
E
[︀
‖𝑥𝑡 − 𝑥⋆‖2

]︀
+ 𝛾

𝐴E [𝐺𝑡]

min
{︀

𝛾
2 ,

𝐴
2

}︀ (︀
E
[︀
Ψ𝑡
]︀
− E

[︀
Ψ𝑡+1

]︀)︀
.

Using that 𝛾
𝐴E [𝐺𝑡] ≤ EΨ𝑡 ≤ Ψ0 and E

[︀
‖𝑥𝑡 − 𝑥⋆‖2

]︀
≤ Ω2, we obtain

EΨ𝑡+1EΨ𝑡 ≤ Ω2 + Ψ0

min
{︀

𝛾
2 ,

𝐴
2

}︀ (︀E [︀Ψ𝑡
]︀
− E

[︀
Ψ𝑡+1

]︀)︀
.

Rearranging again, we get

min
{︀

𝛾
2 ,

𝐴
2

}︀
Ω2 + Ψ0

≤
(︂

1

E [Ψ𝑡+1]
− 1

E [Ψ𝑡]

)︂
.

Summing up from 𝑡 = 0 to 𝑡 = 𝑇 − 1, we finish the proof

E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓(𝑥⋆) ≤ E

[︀
Ψ𝑇
]︀
≤ max

{︂
2

𝛾
,

2

𝐴

}︂
Ω2 + Ψ0

𝑇
. (26)

B.3 Theorem 6

Algorithm 2 3PC-BD (Bidirectional 3PC algorithm)

1: Input: starting point 𝑥0 ∈ R𝑑; 𝑔0, 𝑔0𝑖 ∈ R𝑑 for 𝑖 = 1, · · · , 𝑛 (known by nodes), 𝑔0 = 1
𝑛

𝑛∑︀
𝑖=1

𝑔0𝑖

(known by master); learning rate 𝛾 > 0.
2: for 𝑡 = 0,1,2, · · · , 𝑇 − 1 do
3: Broadcast 𝑔𝑡 to all workers
4: for for all devices 𝑖 = 1, . . . , 𝑛 in parallel do
5: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡

6: 𝑔𝑡+1
𝑖 = 𝒞𝑤

𝑔𝑡
𝑖 ,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥

𝑡+1))

7: Communicate 𝑔𝑡+1
𝑖 to the server

8: end for
9: 𝑔𝑡+1 = 1

𝑛

𝑛∑︀
𝑖=1

𝑔𝑡+1
𝑖

10: 𝑔𝑡+1 = 𝒞𝑀
𝑔𝑡,𝑔𝑡(𝑔𝑡+1)

11: end for

For Theorem 6, we assume that both compressors ℳW and ℳM in Algorithm 1 are 3PC compressors.
The main steps of the algorithm are:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡

𝑔𝑡+1
𝑖 = 𝒞𝑤

𝑔𝑡
𝑖 ,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥

𝑡+1))

𝑔𝑡+1 =
1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡+1
𝑖

𝑔𝑡+1 = 𝒞𝑀
𝑔𝑡,𝑔𝑡(𝑔𝑡+1)
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Unlike in the previous subsection, we use additional notations:

𝑃 𝑡
𝑖 := ‖𝑔𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)‖2 , 𝑃 𝑡 := 1
𝑛

𝑛∑︀
𝑖=1

𝑃 𝑡
𝑖 and 𝑅𝑡 :=

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
.

Lemma 10 is an analogue of Lemma 8 (in bidirectional case we need slightly different arguments at
some steps). Lemma 11 is another technical lemma that upper bounds E [‖𝑔𝑡 − 𝑔𝑡] ‖2.

Lemma 10. Let Assumption 3 hold, 𝒞𝑤 be a 3PC compressor, and 𝑔𝑡+1
𝑖 be an 3PC-BD estimator of

∇𝑓𝑖(𝑥
𝑡+1), 𝑖.𝑒.

𝑔𝑡+1
𝑖 = 𝒞𝑤

𝑔𝑡
𝑖 ,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥

𝑡+1)) (27)

for arbitrary 𝑔0𝑖 for all 𝑖 ∈ [𝑛], 𝑡 ≥ 0. Then

E
[︀
𝑃 𝑡+1

]︀
≤ (1 −𝐴W)E

[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E
[︀
𝑅𝑡
]︀
. (28)

Proof. Define 𝑊 𝑡 := {𝑔𝑡1, · · · , 𝑔𝑡𝑛, 𝑥𝑡,𝑥𝑡+1}, then

E
[︀
𝑃 𝑡+1
𝑖

]︀
= E

[︀
E
[︀
𝑃 𝑡+1
𝑖 | 𝑊 𝑡

]︀]︀
= E

[︁
E
[︁⃦⃦

𝑔𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
⃦⃦2 | 𝑊 𝑡

]︁]︁
= E

[︂
E
[︂⃦⃦⃦

𝒞𝑤
𝑔𝑡
𝑖 ,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥

𝑡+1)) −∇𝑓𝑖(𝑥
𝑡+1)

⃦⃦⃦2
| 𝑊 𝑡

]︂]︂
(6)
≤ (1 −𝐴W)E

[︁⃦⃦
𝑔𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 𝐵WE
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1) −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

.

(29)

Averaging the above inequalities over 𝑖 ∈ [𝑛], we obtain (28). Indeed,

E
[︀
𝑃 𝑡+1

]︀
= E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑃 𝑡+1
𝑖

]︃
=

1

𝑛

𝑛∑︁
𝑖=1

E
[︀
𝑃 𝑡+1
𝑖

]︀
(29)
≤ 1

𝑛

𝑛∑︁
𝑖=1

(1 −𝐴W)E
[︁⃦⃦

𝑔𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+
1

𝑛

𝑛∑︁
𝑖=1

𝐵WE
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1) −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

= (1 −𝐴W)E
[︀
𝑃 𝑡
]︀

+ 𝐵W 1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1) −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 3

≤ (1 −𝐴W)E
[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E‖𝑥𝑡+1 − 𝑥𝑡‖2

= (1 −𝐴W)E
[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E
[︀
𝑅𝑡
]︀
.

Lemma 11. Let Assumptions 3 and 5 hold, 𝒞𝑀 , 𝒞𝑤 be 3PC compressors. Let 𝑔𝑡+1
𝑖 be an 3PC-BD

estimator of ∇𝑓𝑖(𝑥
𝑡+1), i.e.

𝑔𝑡+1
𝑖 = 𝒞𝑤

𝑔𝑡
𝑖 ,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥

𝑡+1)) (30)

and let 𝑔𝑡+1 be an 3PC-BD estimator of 𝑔𝑡+1 = 1
𝑛

𝑛∑︀
𝑖=1

𝑔𝑡+1
𝑖 , i.e.

𝑔𝑡+1
𝑖 = 𝒞𝑀

𝑔𝑡,𝑔𝑡(𝑔𝑡+1) (31)

for arbitrary 𝑔0, 𝑔0𝑖 for all 𝑖 ∈ [𝑛], 𝑡 ≥ 0. Then

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1
⃦⃦2]︁ ≤ (1−𝐴M)E

[︁⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2]︁
+3𝐵M(2−𝐴W)E

[︀
𝑃 𝑡
]︀
+3𝐵M(𝐵W+1)𝐿2

+E
[︀
𝑅𝑡
]︀
,

(32)
where 𝑔𝑡 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡
𝑖 , 𝑔

𝑡 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡
𝑖 .
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Proof. Similarly to the proof of Lemma 10, we define 𝑊 𝑡 := {𝑔𝑡1, · · · , 𝑔𝑡𝑛, 𝑥𝑡,𝑥𝑡+1} and bound
E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1
⃦⃦2]︁

:

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1
⃦⃦2]︁

= E
[︁
E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1
⃦⃦2 | 𝑊 𝑡

]︁]︁
= E

[︁
E
[︁⃦⃦

𝒞𝑀
𝑔𝑡,𝑔𝑡(𝑔𝑡+1) − 𝑔𝑡+1

⃦⃦2 | 𝑊 𝑡
]︁]︁

(6)
≤ (1 −𝐴M)E

[︁⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2]︁
+ 𝐵ME

[︁⃦⃦
𝑔𝑡+1 − 𝑔𝑡

⃦⃦2]︁
, (33)

Further, we bound the last term in (33). Recall that

𝑔𝑡+1 =
1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡+1
𝑖 =

1

𝑛

𝑛∑︁
𝑖=1

𝒞𝑤
𝑔𝑡
𝑖 ,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥

𝑡+1)). (34)

Then,

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡
⃦⃦2]︁

= E

⎡⎣⃦⃦⃦⃦⃦ 1

𝑛

𝑛∑︁
𝑖=1

𝒞𝑤
𝑔𝑡
𝑖 ,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥

𝑡+1)) − 𝑔𝑡𝑖

⃦⃦⃦⃦
⃦
2
⎤⎦

≤ 1

𝑛

𝑛∑︁
𝑖=1

E
[︂⃦⃦⃦

𝒞𝑤
𝑔𝑡
𝑖 ,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥

𝑡+1)) − 𝑔𝑡𝑖

⃦⃦⃦2]︂
(19)
≤ 3

𝑛

𝑛∑︁
𝑖=1

E
[︂⃦⃦⃦

𝒞𝑤
𝑔𝑡
𝑖 ,∇𝑓𝑖(𝑥𝑡)(∇𝑓𝑖(𝑥

𝑡+1)) −∇𝑓𝑖(𝑥
𝑡+1)

⃦⃦⃦2]︂

+
3

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1) −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+
3

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡) − 𝑔𝑡𝑖

⃦⃦2]︁
(6)
≤ 3(1 −𝐴W)

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡) − 𝑔𝑡𝑖

⃦⃦2]︁
+ 3𝐵W 1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1) −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+
3

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1) −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+
3

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡) − 𝑔𝑡𝑖

⃦⃦2]︁
𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 3

≤ 3(2 −𝐴W)E
[︀
𝑃 𝑡
]︀

+ 3(𝐵W + 1)𝐿2
+E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

= 3(2 −𝐴W)E
[︀
𝑃 𝑡
]︀

+ 3(𝐵W + 1)𝐿2
+E
[︀
𝑅𝑡
]︀
, (35)

where the first inequality follows from Young’s inequality. Plugginq (35) into (33) we finish the
proof:

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1
⃦⃦2]︁ ≤ (1 −𝐴M)E

[︁⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2]︁
+ 3𝐵M(2 −𝐴W)E

[︀
𝑃 𝑡
]︀

+ 3𝐵M(𝐵W + 1)𝐿2
+E
[︀
𝑅𝑡
]︀
.

Having proved the previous lemmas, we can now show the convergence of bidirectional 3PC
algorithm.
Theorem 6. Let Assumptions 3 and 5 hold, and let the stepsize in Algorithm 2 be set as

0 ≤ 𝛾 <

(︃
𝐿− + 𝐿+

√︃
6𝐵M(𝐵W + 1)

𝐴M +
2𝐵W

𝐴M

(︂
1 +

3𝐵M(2 −𝐴W)

𝐴M

)︂)︃−1

. (36)

Fix 𝑇 and let �̂�𝑇 be chosen uniformly from {𝑥0,𝑥1, · · · ,𝑥𝑇−1} uniformly at random. Then

E
[︁⃦⃦

∇𝑓(�̂�𝑇 )
⃦⃦2]︁ ≤ 2Ψ0

𝛾𝑇
. (37)

where Ψ𝑇 = 𝑓(𝑥𝑡) − 𝑓 inf + 𝛾
𝐴M ‖𝑔𝑡 − 𝑔𝑡‖2 + 𝛾

𝐴W

(︁
1 + 3𝐵M(2−𝐴W)

𝐴M

)︁
1
𝑛

∑︀𝑛
𝑖=1 ‖𝑔𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)‖2.
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Proof. We apply Lemma 7 and split the error ‖𝑔𝑡 −∇𝑓(𝑥𝑡)‖2 into two parts

𝑓(𝑥𝑡+1)
(20)
≤ 𝑓(𝑥𝑡) − 𝛾

2
‖∇𝑓(𝑥)‖2 −

(︂
1

2𝛾
− 𝐿−

2

)︂
𝑅𝑡 +

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(18)
≤ 𝑓(𝑥𝑡) − 𝛾

2
‖∇𝑓(𝑥)‖2 −

(︂
1

2𝛾
− 𝐿−

2

)︂
𝑅𝑡 + 𝛾

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
+ 𝛾

⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2
≤ 𝑓(𝑥𝑡) − 𝛾

2
‖∇𝑓(𝑥)‖2 −

(︂
1

2𝛾
− 𝐿−

2

)︂
𝑅𝑡 +

𝛾

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2

+ 𝛾
⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2
= 𝑓(𝑥𝑡) − 𝛾

2
‖∇𝑓(𝑥)‖2 −

(︂
1

2𝛾
− 𝐿−

2

)︂
𝑅𝑡 + 𝛾𝑃 𝑡 + 𝛾

⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2
, (38)

where in the last inequality we applied Young’s inequality. Subtracting 𝑓 inf from both sides of the
above inequality, taking expectation and using the notation 𝛿𝑡 = 𝑓(𝑥𝑡) − 𝑓 inf , we get

E
[︀
𝛿𝑡+1

]︀
≤ E

[︀
𝛿𝑡
]︀
−𝛾

2
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁−(︂ 1

2𝛾
− 𝐿−

2

)︂
E
[︀
𝑅𝑡
]︀
+𝛾E

[︀
𝑃 𝑡
]︀
+𝛾E

[︁⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2]︁
. (39)

Further, Lemmas 10 and 11 provide the recursive bounds for the last two terms of (39)

E
[︀
𝑃 𝑡+1

]︀
≤ (1 −𝐴W)E

[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E
[︀
𝑅𝑡
]︀
, (40)

E
[︁⃦⃦

𝑔𝑡+1 − 𝑔𝑡+1
⃦⃦2]︁ ≤ (1 −𝐴M)E

[︁⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2]︁
+ 3𝐵M(2 −𝐴W)E

[︀
𝑃 𝑡
]︀

+ 3𝐵M(𝐵W + 1)𝐿2
+E
[︀
𝑅𝑡
]︀
. (41)

Summing up (39) with a 𝛾
𝐴M multiple of (41) we obtain

E
[︀
𝛿𝑡+1

]︀
+

𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2]︁ ≤ E

[︀
𝛿𝑡
]︀
− 𝛾

2
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁− (︂ 1

2𝛾
− 𝐿−

2

)︂
E
[︀
𝑅𝑡
]︀

+ 𝛾E
[︀
𝑃 𝑡
]︀

+ 𝛾E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2]︁

+
𝛾

𝐴M

(︁
(1 −𝐴M)E

[︁⃦⃦
𝑔𝑡 − 𝑔𝑡

⃦⃦2]︁)︁
+

𝛾

𝐴M

(︀
3𝐵M(2 −𝐴W)E

[︀
𝑃 𝑡
]︀

+ 3𝐵M(𝐵W + 1)𝐿2
+E
[︀
𝑅𝑡
]︀)︀

≤ E
[︀
𝛿𝑡
]︀
− 𝛾

2
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2]︁

−
(︂

1

2𝛾
− 𝐿−

2
−

3𝛾𝐵M(𝐵W + 1)𝐿2
+

𝐴M

)︂
E
[︀
𝑅𝑡
]︀

+ 𝛾

(︂
1 +

3𝐵M(2 −𝐴W)

𝐴M

)︂
E
[︀
𝑃 𝑡
]︀
.

Then adding the above inequality with a 𝛾
𝐴W

(︁
1 + 3𝐵M(2−𝐴W)

𝐴M

)︁
multiple of (40), we get

E
[︀
Ψ𝑡+1

]︀
= E

[︀
𝛿𝑡+1

]︀
+

𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2]︁

+
𝛾

𝐴W

(︂
1 +

3𝐵M(2 −𝐴W)

𝐴M

)︂
E
[︀
𝑃 𝑡+1

]︀
≤ E

[︀
𝛿𝑡
]︀
− 𝛾

2
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2]︁

−
(︂

1

2𝛾
− 𝐿−

2
−

3𝛾𝐵M(𝐵W + 1)𝐿2
+

𝐴M

)︂
E
[︀
𝑅𝑡
]︀

+ 𝛾

(︂
1 +

3𝐵M(2 −𝐴W)

𝐴M

)︂
E
[︀
𝑃 𝑡
]︀

+
𝛾

𝐴W

(︂
1 +

3𝐵M(2 −𝐴W)

𝐴M

)︂(︀
(1 −𝐴W)E

[︀
𝑃 𝑡
]︀

+ 𝐵W𝐿2
+E
[︀
𝑅𝑡
]︀)︀

≤ E
[︀
𝛿𝑡
]︀

+
𝛾

𝐴M E
[︁⃦⃦

𝑔𝑡 − 𝑔𝑡
⃦⃦2]︁

+
𝛾

𝐴W

(︂
1 +

3𝐵M(2 −𝐴W)

𝐴M

)︂
E
[︀
𝑃 𝑡
]︀
− 𝛾

2
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

−
(︂

1

2𝛾
− 𝐿−

2
−

3𝛾𝐵M(𝐵W + 1)𝐿2
+

𝐴M −
𝛾𝐵W𝐿2

+

𝐴W

(︂
1 +

3𝐵M(2 −𝐴W)

𝐴M

)︂)︂
E
[︀
𝑅𝑡
]︀
.

(42)
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Thus by Lemma 6 and the choice of the stepsize

0 ≤ 𝛾 <

(︃
𝐿 + 𝐿+

√︃
6𝐵M(𝐵W + 1)

𝐴M +
2𝐵W

𝐴M

(︂
1 +

3𝐵M(2 −𝐴W)

𝐴M

)︂)︃−1

, (43)

the last term in (42) is not positive. By summing up inequalities for 𝑡 = 0, 1, · · · , 𝑇 − 1, we get

0 ≤ E
[︀
Ψ𝑇
]︀
≤ Ψ0 − 𝛾

2

𝑇−1∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

.

Multiplying both sides by 2
𝛾𝑇 and rearranging we get

1

𝑇

𝑇−1∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 2Ψ0

𝛾𝑇
.

B.4 Convergence for general nonconvex functions

The results in two subsequent subsections set ℳW as a 3PC compressor and ℳM as an indentity one.
According to Lemma 2, Adaptive 3PC is a 3PC compressor. Thus, convergence results from (Richtárik
et al., 2022) are valid for Adaptive 3PC compressor. It leads us to the following corollary.
Corollary 3 (Corollary 5.6 of (Richtárik et al., 2022)). Let Assumptions 2, 3 and 5 hold. Let ℳW

and ℳM in Algorithm 1 be Ada3PC and identity compressors, respectively, and choose the stepsize
𝛾 = 1

𝐿−+𝐿+

√︁
𝐵max
𝐴min

. Then, for any 𝑇 ≥ 1 we have

E
[︀
‖∇𝑓(�̂�𝑇 )‖2

]︀
≤

2(𝑓(𝑥0) − 𝑓(𝑥inf))
(︁
𝐿− + 𝐿+

√︁
𝐵max

𝐴min

)︁
𝑇

+
E
[︀
1
𝑛

∑︀𝑛
𝑖=1 ‖𝑔0𝑖 −∇𝑓𝑖(𝑥

0)‖2
]︀

𝐴min𝑇
.

That is, to achieve E
[︀
‖∇𝑓(�̂�𝑇 )‖2

]︀
≤ 𝜀2 for some 𝜀 > 0, Algorithm 1 requires

𝑇 = 𝒪

⎛⎝2(𝑓(𝑥0) − 𝑓(𝑥inf))
(︁
𝐿− + 𝐿+

√︁
𝐵max

𝐴min

)︁
𝜀2

+
E
[︀
1
𝑛

∑︀𝑛
𝑖=1 ‖𝑔0𝑖 −∇𝑓𝑖(𝑥

0)‖2
]︀

𝐴min𝜀2

⎞⎠
iterations.

B.5 Convergence for PŁnonconvex functions

The setup here is the same as in the previous subsection, except we add the following assumption.
Assumption 6 (PŁ condition). Function 𝑓 : R𝑑 → R satisfies the Polyak-Łojasiewicz (PŁ) condition
with parameter 𝜇 > 0, i.e.,

‖∇𝑓(𝑥)‖2 ≥ 2𝜇(𝑓(𝑥) − 𝑓*) ∀𝑥 ∈ R𝑑,

where 𝑥* := arg min
𝑥∈R𝑑

𝑓(𝑥) and 𝑓* := 𝑓(𝑥*).

Corollary 4 (Corollary 5.9 of (Richtárik et al., 2022)). Let Assumptions 2, 3, 5 and 6 hold. Let ℳW

and ℳM in Algorithm 1 be Ada3PC and identity compressors, respectively, and choose the stepsize

𝛾 = min

⎧⎨⎩ 1

𝐿− + 𝐿+

√︁
2𝐵max

𝐴min

,
𝐴min

2𝜇

⎫⎬⎭ .

Then, to achieve E
[︀
𝑓(𝑥𝑇 )

]︀
− 𝑓* ≤ 𝜀 for some 𝜀 > 0 the method requires

𝒪

⎛⎝max

⎧⎨⎩𝐿− + 𝐿+

√︁
𝐵max

𝐴min

𝜇
,𝐴min

⎫⎬⎭ log
𝑓(𝑥0) − 𝑓(𝑥inf) + E

[︀
1
𝑛

∑︀𝑛
𝑖=1 ‖𝑔0𝑖 −∇𝑓𝑖(𝑥

0)‖2𝛾/𝐴min

]︀
𝜀

⎞⎠
iterations.
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C Experimental details and extra experiments

All simulations are implemented in Python 3.8 and run on Intel(R) Xeon(R) Gold 6230R CPU cluster
with 48 nodes. We fine-tune the stepsize of each considered algorithm with (20, 21, . . . , 28) multiples
of the corresponding theoretical stepsize. As contractive compressor we use Top-𝑘 operator. For
EF21 and CLAG we use top-1 compressor, which usually the best in practice for these methods. For
AdaCGD we choose compressors varying from full compression (skip communication) to compression
of 50% of features. In order to provide fair comparisons, we choose master compressor ℳ𝑀 as
identity operator in these experiments. For the stopping criterion we choose communication cost of
the algorithm.

We use the setup described in Richtárik et al. (2022), namely logistic regression with non-convex
regularizer:

min
𝑥∈R𝑑

[︃
𝑓(𝑥) := 1

𝑁

𝑁∑︀
𝑖=1

log(1 + 𝑒−𝑦𝑖𝑎
⊤
𝑖 𝑥) + 𝜆

𝑑∑︀
𝑗=1

𝑥2
𝑗

1+𝑥2
𝑗

]︃
,

where 𝑎𝑖 ∈ R𝑑, 𝑦𝑖 ∈ {−1, 1} are the training data and labels, and 𝜆 > 0 is a regularization parameter,
which is fixed to 𝜆 = 0.1. We solve this problem using LIBSVM Chang & Lin (2011) datasets
phishing, a1a, a9a. Each dataset has been evenly split into 𝑛 = 20 equal parts where each part
represents a separate client. Figures 2-4 compare AdaCGD with LAG, EF21 and their generalization
CLAG. In the experiments, AdaCGD is shown to be comparable and in some cases superior to CLAG
and always superior to LAG. In other words, AdaCGD efficiently complements CLAG and other 3PC
methods.

Figure 2: Comparison of LAG, CLAG, EF21 and GD with AdaCGD on phishing dataset.

Figure 3: Comparison of LAG, CLAG, EF21 and GD with AdaCGD on a1a dataset.

Figure 4: Comparison of LAG, CLAG, EF21 and GD with AdaCGD on a9a dataset.
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D Limitations

The main limitations of the work are assumptions we make upon functions 𝑓𝑖 of the problem 1. But,
on the other hand, these assumptions govern the convergence rates we report: for example, we cannot
show linear rate for convex functions due to the fundamental lower bound (Nesterov et al., 2018).

Another limitation comes from the analysis of Bidirectional 3PC algorithm (Theorem 6). We show
the analysis only for general nonconvex functions.

23


	1 Introduction
	1.1 Communication-efficient distributed learning via gradient compression
	1.2 mydarkgreenDCGD with bidirectional compression

	2 Motivation and Background
	2.1 Constant contractive compressors
	2.2 Existing adaptive compressors
	2.3 Adaptive compression via selective (lazy) aggregation

	3 Summary of Contributions
	4 Ada3PC: A Compression-Adaptive 3PC Method
	4.1 mydarkgreen3PC compressor
	4.2 Adaptive 3PC compressor
	4.3 Adaptive Compressed Gradient Descent

	5 Theory
	5.1 Assumptions
	5.2 Adaptive 3PC is a 3PC compressor
	5.3 Convergence

	6 Experiments
	7 Discussion and Limitations
	A Basic facts
	B Proofs for Sections 4 and 5
	B.1 lm:adacgdisada3pc
	B.2 thm:3PCcvx
	B.3 thm:nonconvexbidir
	B.4 Convergence for general nonconvex functions
	B.5 Convergence for PLnonconvex functions

	C Experimental details and extra experiments
	D Limitations

