
FedNL: Making Newton-Type Methods
Applicable to Federated Learning

Mher Safaryan∗ Rustem Islamov† Xun Qian‡ Peter Richtárik§

June 05, 2021

Abstract

Inspired by recent work of Islamov et al (2021), we propose a family of Federated Newton
Learn (FedNL) methods, which we believe is a marked step in the direction of making second-order
methods applicable to FL. In contrast to the aforementioned work, FedNL employs a different
Hessian learning technique which i) enhances privacy as it does not rely on the training data to
be revealed to the coordinating server, ii) makes it applicable beyond generalized linear models,
and iii) provably works with general contractive compression operators for compressing the local
Hessians, such as Top-K or Rank-R, which are vastly superior in practice. Notably, we do not
need to rely on error feedback for our methods to work with contractive compressors.

Moreover, we develop FedNL-PP, FedNL-CR and FedNL-LS, which are variants of FedNL
that support partial participation, and globalization via cubic regularization and line search,
respectively, and FedNL-BC, which is a variant that can further benefit from bidirectional
compression of gradients and models, i.e., smart uplink gradient and smart downlink model
compression.

We prove local convergence rates that are independent of the condition number, the number
of training data points, and compression variance. Our communication efficient Hessian learning
technique provably learns the Hessian at the optimum.

Finally, we perform a variety of numerical experiments that show that our FedNL methods
have state-of-the-art communication complexity when compared to key baselines.

∗King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
†King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, and Moscow Institute of

Physics and Technology (MIPT), Dolgoprudny, Russia. This research was conducted while this author was an intern
at KAUST and an undergraduate student at MIPT.

‡King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
§King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

1

ar
X

iv
:2

10
6.

02
96

9v
2

 [
cs

.L
G

]
 2

2
M

ay
 2

02
2

Contents

1 Introduction 4
1.1 First-order methods for FL . 4
1.2 Towards second-order methods for FL . 4
1.3 Desiderata for second-order methods applicable to FL 5

2 Contributions 6
2.1 The Newton Learn framework of Islamov et al. [2021] 6
2.2 Issues with the Newton Learn framework . 6
2.3 Our FedNL framework . 7

3 The Vanilla Federated Newton Learn 8
3.1 New Hessian learning technique . 9
3.2 Compressing matrices . 10
3.3 Two options for updating the global model . 11
3.4 Local convergence theory . 12
3.5 FedNL and the “Newton Triangle” . 14

4 FedNL with Partial Participation, Globalization and Bidirectional Compression 15
4.1 Partial Participation (see Section D) . 15
4.2 Globalization via Line Search (see Section E) . 15
4.3 Globalization via Cubic Regularization (see Section F) 15
4.4 Bidirectional Compression (see Section G) . 15

5 Experiments 16
5.1 Parameter setting . 16
5.2 Local convergence . 16
5.3 Global convergence . 17
5.4 Comparison with NL1 . 17

A Theoretical Comparisons with Related Works 21

B Extra Experiments 24
B.1 Data sets . 24
B.2 Parameters setting . 24
B.3 Compression operators . 25

B.3.1 Random dithering for vectors . 25
B.3.2 Rank-R compression operator for matrices . 25
B.3.3 Top-K compression operator for matrices . 26
B.3.4 Rand-K compression operator for matrices 26

B.4 Projection onto the cone of positive definite matrices 26
B.5 The effect of compression . 27
B.6 Comparison of Options 1 and 2 . 27
B.7 Comparison of different compression operators . 28
B.8 Comparison of different update rules for Hessians . 28
B.9 Bidirectional compression . 28

2

B.10 The performance of FedNL-PP . 30
B.11 Comparison with NL1 . 30
B.12 Local comparison . 31
B.13 Global compersion . 32
B.14 Effect of statistical heterogeneity . 32

C Proofs of Results from Section 3 33
C.1 Auxiliary lemma . 33
C.2 Proof of Theorem 3.6 . 36
C.3 Proof of Lemma 3.7 . 38
C.4 Proof of Lemma 3.8 . 38

D Extension: Partial Participation (FedNL-PP) 39
D.1 Hessian corrected local gradients gki . 39
D.2 Importance of compression errors lki . 40
D.3 Local convergence theory . 40
D.4 Proof of Theorem D.1 . 41
D.5 Proof of Lemma D.2 . 44
D.6 Proof of Lemma D.3 . 45

E Extension: Globalization via Line Search (FedNL-LS) 45
E.1 Line search procedure . 46
E.2 Local convergence theory . 46
E.3 Proof of Theorem E.1 . 46
E.4 Proof of Lemma E.2 . 47

F Extension: Globalization via Cubic Regularization (FedNL-CR) 48
F.1 Cubic regularization . 49
F.2 Solving the subproblem . 49
F.3 Importance of compression errors lki . 49
F.4 Global and local convergence theory . 49
F.5 Proof of Theorem F.1 . 50
F.6 Proof of Lemma F.2 . 53

G Extension: Bidirectional Compression (FedNL-BC) 54
G.1 Model learning technique . 55
G.2 Hessian corrected local gradients . 55
G.3 Local convergence theory . 56
G.4 Proof of Theorem G.4 . 57
G.5 Proof of Lemma G.5 . 61
G.6 Proof of Lemma G.6 . 62

H Local Quadratic Rate of NEWTON-STAR for General Finite-Sum Problems 63

I Limitations 64

J Table of Frequently Used Notation 65

3

1 Introduction

In this paper we consider the federated learning problem

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where d denotes dimension of the model x ∈ Rd we wish to train, n is the total number of
silos/machines/devices/clients in the distributed system, fi(x) is the loss/risk associated with the
data stored on machine i ∈ [n] := {1, 2, . . . , n}, and f(x) is the empirical loss/risk.

1.1 First-order methods for FL

The prevalent paradigm for training federated learning (FL) models [Konečný et al., 2016b,a,
McMahan et al., 2017] (see also the recent surveys by Kairouz et al [2019], Li et al. [2020a]) is to use
distributed first-order optimization methods employing one or more tools for enhancing communication
efficiency, which is a key bottleneck in the federated setting.

These tools include communication compression [Konečný et al., 2016b, Alistarh et al., 2017,
Khirirat et al., 2018] and techniques for progressively reducing the variance introduced by compression
[Mishchenko et al., 2019, Horváth et al., 2019, Gorbunov et al., 2020a, Li et al., 2020b, Gorbunov et al.,
2021a], local computation [McMahan et al., 2017, Stich, 2020, Khaled et al., 2020, Mishchenko et al.,
2021a] and techniques for reducing the client drift introduced by local computation [Karimireddy
et al., 2020, Gorbunov et al., 2021b], and partial participation [McMahan et al., 2017, Gower et al.,
2019] and techniques for taming the slow-down introduced by partial participation [Gorbunov et al.,
2020a, Chen et al., 2020].

Other useful techniques for further reducing the communication complexity of FL methods
include the use of momentum [Mishchenko et al., 2019, Li et al., 2020b], and adaptive learning rates
[Malitsky and Mishchenko, 2019, Xie et al., 2019, Reddi et al., 2020, Xie et al., 2019, Mishchenko
et al., 2021b]. In addition, aspiring FL methods need to protect the privacy of the clients’ data, and
need to be built with data heterogeneity in mind [Kairouz et al, 2019].

1.2 Towards second-order methods for FL

While first-order methods are the methods of choice in the context of FL at the moment, their
communication complexity necessarily depends on (a suitable notion of) the condition number of
the problem, which can be very large as it depends on the structure of the model being trained, on
the choice of the loss function, and most importantly, on the properties of the training data.

However, in many situations when algorithm design is not constrained by the stringent require-
ments characterizing FL, it is very well known that carefully designed second-order methods can be
vastly superior. On an intuitive level, this is mainly because these methods make an extra compu-
tational effort to estimate the local curvature of the loss landscape, which is useful in generating
more powerful and adaptive update direction. However, in FL, it is often communication and not
computation which forms the key bottleneck, and hence the idea of “going second order” looks
attractive. The theoretical benefits of using curvature information are well known. For example, the
classical Newton’s method, which forms the basis for most efficient second-order method in much
the same way the gradient descent method forms the basis for more elaborate first-order methods,

4

enjoys a fast condition-number-independent (local) convergence rate [Beck, 2014], which is beyond the
reach of all first-order methods. However, Newton’s method does not admit an efficient distributed
implementation in the heterogeneous data regime as it requires repeated communication of local
Hessian matrices ∇2fi ∈ Rd×d to the server, which is prohibitive as this constitutes a massive burden
on the communication links.

1.3 Desiderata for second-order methods applicable to FL

In this paper we take the stance that it would be highly desirable to develop Newton-type methods
for solving the federated learning problem (1) that would

[hd] work well in the truly heterogeneous data setting (i.e., we do not want to assume that the
functions f1, . . . , fn are “similar”),

[fs] apply to the general finite-sum problem (1), without imparting strong structural assumptions
on the local functions f1, . . . , fn (e.g., we do not want to assume that the functions f1, . . . , fn
are quadratics, generalized linear models, and so on),

[as] benefits from Newton-like (matrix-valued) adaptive stepsizes,

[pe] employ at least a rudimentary privacy enhancement mechanism (in particular, we do not want
the devices to be sending/revealing their training data to the server),

[uc] enjoy, through ubiased communication compression strategies applied to the Hessian, such
as Rand-K, the same low O(d) communication cost per communication round as gradient
descent,

[cc] be able to benefit from the more aggressive contractive communication compression strategies
applied to the Hessian, such as Top-K and Rank-R,

[fr] have fast local rates unattainable by first order methods (e.g., rates independent of the condition
number),

[pp] support partial participation (this is important when the number n of devices is very large),

[gg] have global convergence guarantees, and superior global empirical behavior, when combined
with a suitable globalization strategy (e.g., line search or cubic regularization),

[gc] optionally be able to use, for a more dramatic communication reduction, additional smart
uplink (i..e, device to server) gradient compression,

[mc] optionally be able to use, for a more dramatic communication reduction, additional smart
downlink (i.e., server to device) model compression,

[lc] perform provably useful local computation, even in the heterogeneous data setting (it is known
that local computation via gradient-type steps, which form the backbone of methods such as
FedAvg and LocalSGD, provably helps under some degree of data similarity only).

However, to the best of our knowledge, existing Newton-type methods are not applicable to FL
as they are not compatible with most of the aforementioned desiderata.

5

It is therefore natural and pertinent to ask whether it is possible to design theoretically
well grounded and empirically well performing Newton-type methods that would be able to
conform to the FL-specific desiderata listed above.

In this work, we address this challenge in the affirmative.

2 Contributions

Before detailing our contributions, it will be very useful to briefly outline the key elements of the
recently proposed Newton Learn (NL) framework of Islamov et al. [2021], which served as the main
inspiration for our work, and which is also the closest work to ours.

2.1 The Newton Learn framework of Islamov et al. [2021]

The starting point of their work is the observation that the Newton-like method

xk+1 = xk − (∇2f(x∗))−1∇f(xk),

called Newton Star (NS), where x∗ is the (unique) solution of (1), converges to x∗ locally quadratically
under suitable assumptions, which is a desirable property it inherits from the classical Newton
method. Clearly, this method is not practical, as it relies on the knowledge of the Hessian at the
optimum.

However, under the assumption that the matrix ∇2f(x∗) is known to the server, NS can be
implemented with O(d) cost in each communication round. Indeed, NS can simply be treated as
gradient descent, albeit with a matrix-valued stepsize equal to (∇2f(x∗))−1.

The first key contribution of Islamov et al. [2021] is the design of a strategy, for which they coined
the term Newton Learn, which learns the Hessians ∇2f1(x∗), . . . ,∇2fn(x∗), and hence their average,
∇2f(x∗), progressively throughout the iterative process, and does so in a communication efficient
manner, using unbiased compression [uc] of Hessian information. In particular, the compression level
can be adjusted so that in each communication round, O(d) floats need to be communicated between
each device and the server only. In each iteration, the master uses the average of the current learned
local Hessian matrices in place of the Hessian at the optimum, and subsequently performs a step
similar to that of NS. So, their method uses adaptive matrix-valued stepsizes [as].

Islamov et al. [2021] prove that their learning procedure indeed works in the sense that the
sequences of the learned local matrices converge to the local optimal Hessians ∇2fi(x

∗). This
property leads to a Newton-like acceleration, and as a result, their NL methods enjoy a local linear
convergence rate (for a Lyapunov function that includes Hessian convergence) and local superlinear
convergence rate (for distance to the optimum) that is independent of the condition number, which
is a property beyond the reach of any first-order method [fr]. Moreover, all of this provably works in
the heterogeneous data setting [hd].

Finally, they develop a practical and theoretically grounded globalization strategy [gg] based on
cubic regularization, called Cubic Newton Learn (CNL).

2.2 Issues with the Newton Learn framework

While the above development is clearly very promising in the context of distributed optimization,
the results suffer from several limitations which prevent the methods from being applicable to FL.

6

Table 1: Comparison of the main features of our family of FedNL algorithms and results with those
of Islamov et al. [2021], which we used as an inspiration. We have made numerous and significant
modifications and improvements in order to obtain methods applicable to federated learning.

Feature Islamov et al. [2021] This Work
[hd] supports heterogeneous data setting 3 3

[fs] applies to general finite-sum problems 7 3

[as] uses adaptive stepsizes 3 3

[pe] privacy is enhanced (training data is not sent to the server) 7 3

[uc] supports unbiased Hessian compression (e.g., Rand-K) 3 3

[cc] supports contractive Hessian compression (e.g., Top-K) 7 3

[fr] fast local rate: independent of the condition number 3 3

[fr] fast local rate: independent of the # of training data points 7 3

[fr] fast local rate: independent of the compressor variance 7 3

[pp] supports partial participation 7 3(Alg 2)
[gg] has global convergence guarantees via line search 7 3(Alg 3)
[gg] has global convergence guarantees via cubic regularization 3 3(Alg 4)
[gc] supports smart uplink gradient compression at the devices 7 3(Alg 5)
[mc] supports smart downlink model compression by the master 7 3(Alg 5)
[lc] performs useful local computation 3 3

First, the Newton Learn strategy of Islamov et al. [2021] critically depends on the assumption that
the local functions are of the form

fi(x) =
1

m

m∑
j=1

ϕij(a
>
ijx), (2)

where ϕij : R → R are sufficiently well behaved functions, and ai1, . . . , aim ∈ Rd are the training
data points owned by device i. As a result, their approach is limited to generalized linear models
only, which violates [fs] from the aforementioned wish list. Second, their communication strategy
critically relies on each device i sending a small subset of their private training data {ai1, . . . , aim} to
the server in each communication round, which violates [pe]. Further, while their approach supports
O(d) communication, it does not support more general contractive compressors [cc], such as Top-K
and Rank-R, which have been found very useful in the context of first order methods with gradient
compression. Finally, the methods of Islamov et al. [2021] do not support bidirectional compression
[bc] of gradients and models, and do not support partial participation [pp].

2.3 Our FedNL framework

We propose a family of five Federated Newton Learn methods (Algorithms 1–5), which we believe
constitutes a marked step in the direction of making second-order methods applicable to FL.

In contrast to the work of Islamov et al. [2021] (see Table 1), our vanilla method FedNL
(Algorithm 1) employs a different Hessian learning technique, which makes it applicable beyond
generalized linear models (2) to general finite-sum problems [fs], enhances privacy as it does not rely
on the training data to be revealed to the coordinating server [pe], and provably works with general
contractive compression operators for compressing the local Hessians, such as Top-K or Rank-R,
which are vastly superior in practice [cc]. Notably, we do not need to rely on error feedback [Seide
et al., 2014, Stich et al., 2018, Karimireddy et al., 2019, Gorbunov et al., 2020b], which is essential

7

Table 2: Theoretical comparison of 2 gradient-based (Gradient Descent and ADIANA) and 3
second-order (Newton, NL and FedNL) methods. See Section A and the extended Table 5 for more
details.

Method # Communication Rounds Comm. Cost
per Round Communication Complexity

Gradient Descent1 O(κ log 1
ε
) O(d) O(dκ log 1

ε
)

ADIANA1

Li et al. [2020b] O
((

d+
√
κ+

√(
d
n

+
√

d
n

)
dκ

)
log 1

ε

)
O(1) O

((
d+
√
κ+

√(
d
n

+
√

d
n

)
dκ

)
log 1

ε

)
Newton O(log log 1

ε
) O(d2) O(d2 log log 1

ε
)

NL
[Islamov et al., 2021] O

(√
#data

√
log 1

ε

)
O(d) O

(
d
√

#data
√

log 1
ε

)
FedNL

(this work; (7)) O
(
log 1

ε

)
O(d) O

(
d log 1

ε

)
FedNL

(this work; (9)) O
(√

d
√

log 1
ε

)
O(d) O

(
d
√
d
√

log 1
ε

)
1 These methods have global rates. κ is the condition number: κ = L

µ
where L is a smoothness constant and µ is the strong

convexity constant.
2 The last column (communication complexity) is the product of the previous two columns and is the key quantity to be
compared.

to prevent divergence in first-order methods employing such compressors [Beznosikov et al., 2020],
for our methods to work with contractive compressors. We prove that our communication efficient
Hessian learning technique provably learns the Hessians at the optimum.

Like Islamov et al. [2021], we prove local convergence rates that are independent of the condition
number [fr]. However, unlike their rates, some of our rates are also independent of number training
data points, and of compression variance [fr]. All our complexity results are summarized in Table 3.

Moreover, we show that our approach works in the partial participation [pp] regime by developing
the FedNL-PP method (Algorithm 2), and devise methods employing globalization strategies: FedNL-
LS (Algorithm 3), based on backtracking line search, and FedNL-CR (Algorithm 4), based on cubic
regularization [gg]. We show through experiments that the former is much more efficient in practice
than the latter. Hence, the proposed line search globalization is superior to the cubic regularization
approach employed by Islamov et al. [2021].

Our approach can further benefit from smart uplink gradient compression [gc] and smart downlink
model compression [mc] – see FedNL-BC (Algorithm 5).

Finally, we perform a variety of numerical experiments that show that our FedNL methods have
state-of-the-art communication complexity when compared to key baselines.

3 The Vanilla Federated Newton Learn

We start the presentation of our algorithms with the vanilla FedNL method, commenting on the
intuitions and technical novelties. The method is formally described1 in Alg. 1.

1For all our methods, we describe the steps constituting a single communication round only. To get an iterative
method, one simply needs to repeat provided steps in an iterative fashion.

8

Table 3: Summary of algorithms proposed and convergence results proved in this paper.

Convergence Rate independent of

Method result † type rate
the condition # (left)

training data (middle)
compressor (right)

Theorem

Newton Zero
N0 (Equation (10)) rk ≤ 1

2k
r0 local linear 3 3 3 3.6

FedNL (Algorithm 1)
rk ≤ 1

2k
r0 local linear 3 3 3 3.6

Φk1 ≤ θkΦ0
1 local linear 3 3 7 3.6

rk+1 ≤ cθkrk local superlinear 3 3 7 3.6

Partial Participation
FedNL-PP (Algorithm 2)

Wk ≤ θkW0 local linear 3 3 3 D.1
Φk2 ≤ θkΦ0

2 local linear 3 3 7 D.1
rk+1 ≤ cθkWk local linear 3 3 7 D.1

Line Search
FedNL-LS (Algorithm 3) ∆k ≤ θk∆0 global linear 7 3 3 E.1

Cubic Regularization
FedNL-CR (Algorithm 4)

∆k ≤ c/k global sublinear 7 3 3 F.1
∆k ≤ θk∆0 global linear 7 3 3 F.1
Φk1 ≤ θkΦ0

1 local linear 3 3 7 F.1
rk+1 ≤ cθkrk local superlinear 3 3 7 F.1

Bidirectional Compression
FedNL-BC (Algorithm 5) Φk3 ≤ θkΦ0

3 local linear 3 3 7 G.4

Newton Star
NS (Equation (56)) rk+1 ≤ cr2k local quadratic 3 3 3 H.1

Quantities for which we prove convergence: (i) distance to solution rk := ‖xk−x∗‖2; Wk := 1
n

∑n
i=1 ‖wki −x∗‖2 (ii) Lyapunov

functions Φk1 := c‖xk − x∗‖2 + 1
n

∑n
i=1 ‖Hk

i −∇2fi(x
∗)‖2F; Φk2 := cWk + 1

n

∑n
i=1 ‖Hk

i −∇2fi(x
∗)‖2F; Φk3 := ‖zk − x∗‖2 +

c‖wk − x∗‖2. (iii) Function value suboptimality ∆k := f(xk)− f(x∗)
† constants c > 0 and θ ∈ (0, 1) are possibly different each time they appear. Refer to the precise statements of the theorems
for the exact values.

3.1 New Hessian learning technique

The first key technical novelty in FedNL is the new mechanism for learning the Hessian ∇2f(x∗) at
the (unique) solution x∗ in a communication efficient manner. This is achieved by maintaining and
progressively updating local Hessian estimates Hk

i of ∇2fi(x
∗) for all devices i ∈ [n] and the global

Hessian estimate

Hk =
1

n

n∑
i=1

Hk
i

of ∇2f(x∗) for the central server. Thus, the goal is to induce Hk
i → ∇2fi(x

∗) for all i ∈ [n], and as
a consequence, Hk → ∇2f(x∗), throughout the training process.

A naive choice for the local estimates Hk
i would be the exact local Hessians ∇2fi(x

k), and
consequently the global estimate Hk would be the exact global Hessian ∇2f(xk). While this naive
approach learns the global Hessian at the optimum, it needs to communicate the entire matrices
∇2fi(x

k) to the server in each iteration, which is extremely costly. Instead, in FedNL we aim to
reuse past Hessian information and build the next estimate Hk+1

i by updating the current estimate
Hk
i . Since all devices have to be synchronized with the server, we also need to make sure the update

from Hk
i to Hk+1

i is easy to communicate. With this intuition in mind, we propose to update the
local Hessian estimates via the rule

Hk+1
i = Hk

i + αSki ,

where
Ski = Cki (∇2fi(x

k)−Hk
i),

9

and α > 0 is the learning rate. Notice that we reduce the communication cost by explicitly requiring
all devices i ∈ [n] to send compressed matrices Ski to the server only.

Algorithm 1 FedNL (Federated Newton Learn)

1: Parameters: Hessian learning rate α ≥ 0; compression operators {Ck1 , . . . , Ckn}
2: Initialization: x0 ∈ Rd; H0

1, . . . ,H
0
n ∈ Rd×d and H0 := 1

n

∑n
i=1 H

0
i

3: for each device i = 1, . . . , n in parallel do
4: Get xk from the server and compute local gradient ∇fi(xk) and local Hessian ∇2fi(x

k)
5: Send ∇fi(xk), Ski := Cki (∇2fi(x

k)−Hk
i) and lki := ‖Hk

i −∇2fi(x
k)‖F to the server

6: Update local Hessian shift to Hk+1
i = Hk

i + αSki
7: end for
8: on server
9: Get ∇fi(xk), Ski and lki from each node i ∈ [n]

10: Sk = 1
n

n∑
i=1

Ski , l
k = 1

n

n∑
i=1

lki , H
k+1 = Hk + αSk

11: Option 1: xk+1 = xk −
[
Hk
]−1

µ
∇f(xk)

12: Option 2: xk+1 = xk −
[
Hk + lkI

]−1∇f(xk)

The Hessian learning technique employed in the Newton Learn framework of Islamov et al. [2021]
is critically different to ours as it heavily depends on the structure (2) of the local functions. Indeed,
the local optimal Hessians

∇2fi(x
∗) =

1

m

m∑
j=1

ϕ′′ij(a
>
ijx
∗)aija

>
ij

are learned via the proxy of learning the optimal scalars ϕ′′ij(a
>
ijx
∗) for all local data points j ∈ [m],

which also requires the transmission of the active data points aij to the server in each iteration. This
makes their method inapplicable to the general finite sum problems [fs], and incapable of securing
even the most rudimentary privacy enhancement [pe] mechanism.

We do not make any structural assumption on the problem (1), and rely on the following general
conditions to prove effectiveness of our Hessian learning technique:

Assumption 3.1. The average loss f is µ-strongly convex, and all local losses fi(x) have Lipschitz
continuous Hessians. Let L∗, LF and L∞ be the Lipschitz constants with respect to three different
matrix norms: spectral, Frobenius and infinity norms, respectively. Formally, we require

‖∇2fi(x)−∇2fi(y)‖ ≤ L∗‖x− y‖
‖∇2fi(x)−∇2fi(y)‖F ≤ LF‖x− y‖

max
j,l
|(∇2fi(x)−∇2fi(y))jl| ≤ L∞‖x− y‖

to hold for all i ∈ [n] and x, y ∈ Rd.

3.2 Compressing matrices

In the literature on first-order compressed methods, compression operators are typically applied to
vectors (e.g., gradients, gradient differences, models). As our approach is based on second-order

10

information, we apply compression operators to d× d matrices of the form ∇2fi(x
k)−Hk

i instead.
For this reason, we adapt two popular classes of compression operators used in first-order methods
to act on d× d matrices by treating them as vectors of dimension d2.

Definition 3.2 (Unbiased Compressors). By B(ω) we denote the class of (possibly randomized)
unbiased compression operators C : Rd×d → Rd×d with variance parameter ω ≥ 0 satisfying

E [C(M)] = M, E
[
‖C(M)−M‖2F

]
≤ ω‖M‖2F (3)

for all matrices M ∈ Rd×d.

Common choices of unbiased compressors are random sparsification and quantization (see
Appendix).

Definition 3.3 (Contractive Compressors). By C(δ) we denote the class of deterministic contractive
compression operators C : Rd×d → Rd×d with contraction parameter δ ∈ [0, 1] satisfying

‖C(M)‖F ≤ ‖M‖F, ‖C(M)−M‖2F ≤ (1− δ)‖M‖2F (4)

for all matrices M ∈ Rd×d.

The first condition of (4) can be easily removed by scaling the operator C appropriately. In-
deed, if for some M ∈ Rd×d we have ‖C(M)‖F > ‖M‖F, then we can use the scaled compressor
C̃(M) := ‖M‖F

‖C(M)‖FC(M) instead, as this satisfies (4) with the same parameter δ. Common examples
of contractive compressors are Top-K and Rank-R operators (see Appendix).

From the theory of first-order methods employing compressed communication, it is known
that handling contractive biased compressors is much more challenging than handling unbiased
compressors. In particular, a popular mechanism for preventing first-order methods utilizing biased
compressors from divergence is the error feedback framework. However, contractive compressors
often perform much better empirically than their unbiased counterparts. To highlight the strength
of our new Hessian learning technique, we develop our theory in a flexible way, and handle both
families of compression operators. Surprisingly, we do not need to use error feedback for contractive
compressors for our methods to work.

Compression operators are used in [Islamov et al., 2021] in a fundamentally different way. First,
their theory supports unbiased compressors only, and does not cover the practically favorable
contractive compressors [cc]. More importantly, compression is applied within the representation
(2) as an operator acting on the space Rm. In contrast to our strategy of using compression
operators, this brings the necessity to reveal, in each iteration, the training data {ai1, . . . , aim} whose
corresponding coefficients in (2) are not zeroed out after the compression step [pe]. Moreover, when
O(d) communication cost per communication round is achieved, the variance of the compression
noise depends on the number of data points m, which then negatively affects the local convergence
rates. As the amount of training data can be huge, our convergence rates provide stronger guarantees
by not depending on the size of the training dataset [fr].

3.3 Two options for updating the global model

Finally, we offer two options for updating the global model at the server.

11

• The first option assumes that the server knows the strong convexity parameter µ > 0 (see
Assumption 3.1), and that it is powerful enough to compute the projected Hessian estimate[
Hk
]
µ
, i.e., that it is able to project the current global Hessian estimate Hk onto the set{

M ∈ Rd×d : M> = M, µI �M
}

in each iteration (see the Appendix).

• Alternatively, if µ is unknown, all devices send the compression errors

lki := ‖Hk
i −∇2fi(x

k)‖F

(this extra communication is extremely cheap as all lki variables are floats) to the server,
which then computes the corrected Hessian estimate Hk + lkI by adding the average error
lk = 1

n

∑n
i=1 l

k
i to the global Hessian estimate Hk.

Both options require the server in each iteration to solve a linear system to invert either the
projected, or the corrected, global Hessian estimate. The purpose of these options is quite simple:
unlike the true Hessian, the compressed local Hessian estimates Hk

i , and also the global Hessian
estimate Hk, might not be positive definite, or might even not be of full rank. Further importance
of the errors lki will be discussed when we consider extensions of FedNL to partial participation and
globalization via cubic regularization.

3.4 Local convergence theory

Note that FedNL includes two parameters, compression operators Cki and Hessian learning rate α > 0,
and two options to perform global updates by the master. To provide theoretical guarantees, we
need one of the following two assumptions.

Assumption 3.4. Cki ∈ C(δ) for all i ∈ [n] and k ≥ 0. Moreover, (i) α = 1−
√

1− δ, or (ii) α = 1.

Assumption 3.5. Cki ∈ B(ω) for all i ∈ [n] and k ≥ 0 and 0 < α ≤ 1
ω+1 . Moreover, for all i ∈ [n]

and j, l ∈ [d], each entry (Hk
i)jl is a convex combination of {(∇2fi(x

t))jl}kt=0 for any k ≥ 0.

To present our results in a unified manner, we define some constants depending on what
parameters and which option is used in FedNL. Below, constants A and B depend on the choice of
the compressors Cki and the learning rate α, while C and D depend on which option is chosen for
the global update.

(A,B) :=


(α2, α) if Assumption 3.4(i) holds
(δ/4, 6/δ − 7/2) if Assumption 3.4(ii) holds
(α, α) if Assumption 3.5 holds

(5)

(C,D) :=

{
(2, L2

∗) if Option 1 is used
(8, (L∗ + 2LF)2) if Option 2 is used

(6)

We prove three local rates for FedNL: for the squared distance to the solution ‖xk − x∗‖2, and
for the Lyapunov function

Φk := Hk + 6BL2
F‖xk − x∗‖2,

12

where

Hk :=
1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖2F.

Theorem 3.6. Let Assumption 3.1 hold. Assume ‖x0 − x∗‖ ≤ µ√
2D

and Hk ≤ µ2

4C for all k ≥ 0.
Then, FedNL (Algorithm 1) converges linearly with the rate

‖xk − x∗‖2 ≤ 1

2k
‖x0 − x∗‖2. (7)

Moreover, depending on the choice (5) of the compressors Cki (Assumption 3.4 or 3.5), learning rate
α, and which option is used for global model updates, we have the following linear and superlinear
rates:

E[Φk] ≤
(

1−min

{
A,

1

3

})k
Φ0, (8)

E
[
‖xk+1 − x∗‖2

‖xk − x∗‖2

]
≤
(

1−min

{
A,

1

3

})k (
C +

D

12BL2
F

)
Φ0

µ2
. (9)

Let us comment on these rates.

• First, the local linear rate (7) with respect to iterates is based on a universal constant, i.e.,
it does not depend on the condition number of the problem, the size of the training data, or
the dimension of the problem. Indeed, the squared distance to the optimum is halved in each
iteration.

• Second, we have linear rate (8) for the Lyapunov function Φk, which implies the linear
convergence of all local Hessian estimates Hk

i to the local optimal Hessians ∇2fi(x
∗). Thus,

our initial goal to progressively learn the local optimal Hessians in a communication efficient
manner is achieved, justifying the effectiveness of the new Hessian learning technique.

• Finally, our Hessian learning process accelerates the convergence of iterates to a superlinear
rate (9). Both rates (8) and (9) are independent of the condition number of the problem, or the
number of data points. However, they do depend on the compression variance (since A depends
on δ or ω), which, in case of O(d) communication constraints, depend on the dimension d only.

For clarity of exposition, in Theorem 3.6 we assumed Hk ≤ µ2

4C for all iterations k ≥ 0. Below,
we prove that this inequality holds, using the initial conditions only.

Lemma 3.7. Let Assumption 3.4 hold, and assume ‖x0 − x∗‖ ≤ e1 := min{ µ
2LF

√
A
BC ,

µ√
2D
} and

‖H0
i −∇2fi(x

∗)‖F ≤ µ

2
√
C
. Then ‖xk − x∗‖ ≤ e1 and ‖Hk

i −∇2fi(x
∗)‖F ≤ µ

2
√
C

for all k ≥ 0.

Lemma 3.8. Let Assumption 3.5 hold, and assume ‖x0−x∗‖ ≤ e2 := µ√
D+4Cd2L2

∞
. Then ‖xk−x∗‖ ≤

e2 and Hk ≤ µ2

4C for all k ≥ 0.

13

3.5 FedNL and the “Newton Triangle”

One implication of Theorem 3.6 is that the local rate 1
2k

(see (7)) holds even when we specialize
FedNL to Cki ≡ 0, α = 0 and H0

i = ∇2fi(x
0) for all i ∈ [n]. These parameter choices give rise to the

following simple method, which we call Newton Zero (N0):

xk+1 = xk −
[
∇2f(x0)

]−1∇f(xk), k ≥ 0. (10)

Interestingly, N0 only needs initial second-order information, i.e., Hessian at the zeroth iterate,
and the same first-order information as Gradient Descent (GD), i.e., ∇f(xk) in each iteration.
Moreover, unlike GD, whose rate depends on a condition number, the local rate 1

2k
of N0 does not.

Besides, FedNL includes NS (when Cki ≡ 0, α = 0, H0
i = ∇2fi(x

∗)) and classical Newton (N) (when
Cki ≡ I, α = 1, H0

i = 0) as special cases.
It can be helpful to visualize the three special Newton-type methods—N, NS and N0 —as the

vertices of a triangle capturing a subset of two of these three requirements: 1) O(d) communication
cost per round, 2) implementability in practice, and 3) local quadratic rate. Indeed, each of these
three methods satisfies two of these requirements only: N (2+3), NS (1+3) and N0 (1+2). Finally,
FedNL interpolates between these requirements. See Figure 1.

FedNL

Newton

Newton
Star

Newton
Zero

LS

PP

BC

CR

O(d)
communication
cost per round

Implementability
in practice

Local
quadratic rate

Figure 1: Visualization of the three special Newton-type methods—Newton (N), Newton Star
(NS) and Newton Zero (N0)—as the vertices of a triangle capturing a subset of two of these three
requirements: 1) O(d) communication cost per round, 2) implementability in practice, and 3) local
quadratic rate. Indeed, each of these three methods satisfies two of these requirements only: N
(2+3), NS (1+3) and N0 (1+2). Finally, the proposed FedNL framework with its four extensions to
Partial Participation (FedNL-PP), globalization via Line Search (FedNL-LS), globalization via Cubic
Regularization (FedNL-CR) and Bidirectional Compression (FedNL-BC) interpolates between these
requirements.

14

4 FedNL with Partial Participation, Globalization and Bidirectional
Compression

Here we briefly describe four extensions to FedNL and the key technical contributions. Detailed
sections for each extension are deferred to the Appendix.

4.1 Partial Participation (see Section D)

In FedNL-PP (Algorithm 2), the server selects a subset Sk ⊆ [n] of τ devices, uniformly at random,
to participate in each iteration. As devices might be inactive for several iterations, the same local
gradient and local Hessian used in FedNL does not provide convergence in this case. To guarantee
convergence, devices need to compute Hessian corrected local gradients

gki = (Hk
i + lki I)w

k
i −∇fi(wki),

where wki is the last global model that device i received from the server. This is an innovation which
also requires a different analysis.

4.2 Globalization via Line Search (see Section E)

Our first globalization strategy, FedNL-LS (Algorithm 3), which performs significantly better in
practice than FedNL-CR (described next), is based on a backtracking line search procedure. The idea
is to fix the search direction

dk = −
[
Hk
]−1

µ
∇f(xk)

by the server and find the smallest integer s ≥ 0 which leads to a sufficient decrease in the loss

f(xk + γsdk) ≤ f(xk) + cγs
〈
∇f(xk), dk

〉
with some parameters c ∈ (0, 1/2] and γ ∈ (0, 1).

4.3 Globalization via Cubic Regularization (see Section F)

Our next globalization strategy, FedNL-CR (Algorithm 4), is to use a cubic regularization term L∗
6 ‖h‖

3,
where L∗ is the Lipschitz constant for Hessians and h is the direction to the next iterate. However,
to get a global upper bound, we had to correct the global Hessian estimate Hk via compression error
lk. Indeed, since ∇2f(xk) � Hk + lkI, we deduce

f(xk+1) ≤ f(xk) +
〈
∇f(xk), hk

〉
+

1

2

〈
(Hk + lkI)hk, hk

〉
+
L∗
6
‖hk‖3

for all k ≥ 0. This leads to theoretical challenges and necessitates a new analysis.

4.4 Bidirectional Compression (see Section G)

Finally, we modify FedNL to allow for an even more severe level of compression that can’t be
attained by compressing the Hessians only. This is achieved by compressing the gradients (uplink)
and the model (downlink), in a “smart” way. In FedNL-BC (Alg. 5), the server operates its own

15

compressors CkM applied to the model, and uses an additional “smart” model learning technique similar
to the proposed Hessian learning technique. Besides, all devices compress their local gradients via a
Bernoulli compression scheme, which necessitates the use of another “smart” strategy using Hessian
corrected local gradients

gki = Hk
i (z

k − wk) +∇fi(wk),

where zk is the current learned global model and wk is the last learned global model when local
gradients are sent to the server. These changes are substantial and require novel analysis.

5 Experiments

We carry out numerical experiments to study the performance of FedNL, and compare it with various
state-of-the-art methods in federated learning. We consider the problem (1) with local loss functions

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x) +
λ

2
‖x‖2

}
, fi(x) =

1

m

m∑
j=1

log
(

1 + exp(−bija>ijx)
)
, (11)

where {aij , bij}j∈[m] are data points at the i-th device and λ > 0 is a regularization parameter. The
datasets were taken from LibSVM library [Chang and Lin, 2011]: a1a, a9a, w7a, w8a, and phishing.

5.1 Parameter setting

In all experiments we use the theoretical parameters for gradient type methods (except those using
line search): vanilla gradient descent GD, DIANA [Mishchenko et al., 2019], ADIANA [Li et al., 2020b],
and Shifted Local gradient descent, S-Local-GD [Gorbunov et al., 2021b]. For DINGO [Crane and
Roosta, 2019] we use the authors’ choice: θ = 10−4, φ = 10−6, ρ = 10−4. Backtracking line search for
DINGO selects the largest stepsize from {1, 2−1, . . . , 2−10}. The initialization of H0

i for NL1 [Islamov
et al., 2021], FedNL and FedNL-LS is ∇2fi(x

0), and for FedNL-CR is 0. For FedNL, FedNL-LS, and
FedNL-CR we use Rank-1 compression operator and stepsize α = 1. We use two values of the
regularization parameter: λ ∈ {10−3, 10−4}. In the figures we plot the relation of the optimality gap
f(xk) − f(x∗) and the number of communicated bits per node, or the number of communication
rounds. The optimal value f(x∗) is chosen as the function value at the 20-th iterate of standard
Newton’s method.

5.2 Local convergence

In our first experiment we compare FedNL and N0 with gradient type methods: ADIANA with
random dithering (ADIANA, RD, s =

√
d), DIANA with random dithering (DIANA, RD, s =

√
d),

Shifted Local gradient descent (S-Local-GD, p = q = 1
n), vanilla gradient descent (GD), and DINGO.

According to the results summarized in Figure 2 (first row), we conclude that FedNL outperforms
all gradient type methods and DINGO, locally, by many orders in magnitude. We want to note that
we include the communication cost of the initialization for FedNL and N0 in order to make a fair
comparison (this is why there is a straight line for these methods initially).

16

21 25 29 213 217 221 225 229 233

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

N0
ADIANA, RD, s=

√
d

DIANA, RD, s=
√
d

GD
S-Local-GD, p= q= 1

n

21 25 29 213 217 221 225 229

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
N0
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

21 24 27 210 213 215 218 221 224

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

27 210 213 216 219 222 225

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

(a) madelon, λ = 10−3 (b) a1a, λ = 10−4 (c) w8a, λ = 10−3 (d) phishing, λ = 10−4

21 25 29 213 217 221 225 229 233

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

N0-LS
FedNL-LS, Rank-R;R=1
FedNL-CR, Rank-R;R=1
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
GD-LS
S-Local-GD, p= q= 1

n

21 26 211 216 221 226 231

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

N0-LS
FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

ADIANA, RD, s=
√
d

DIANA, RD, s=
√
d

GD
GD-LS

24 27 210 213 216 219 222 225

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

DINGO

27 210 213 216 219 222 225

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

DINGO

(a) madelon, λ = 10−3 (b) a1a, λ = 10−4 (c) phishing, λ = 10−3 (d) a9a, λ = 10−4

212 213 214 215 216 217 218 219 220

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

NL1, Rand-K,K= 1

FedNL, Rank-R,R= 1

FedNL, Top-K,K= d

FedNL, PowerSGD, R= 1

28 210 212 214 216 218

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

NL1, Rand-K,K= 1

FedNL, Rank-R,R= 1

FedNL, Top-K,K= d

FedNL, PowerSGD, R= 1

210 212 214 216 218

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

NL1, Rand-K,K= 1

FedNL, Rank-R,R= 1

FedNL, Top-K,K= d

FedNL, PowerSGD, R= 1

29 213 217 221 225

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

NL1, Rand-K,K= 1

FedNL, Rank-R,R= 1

FedNL, Top-K,K= d

FedNL, PowerSGD, R= 1

(a) w8a, λ = 10−3 (b) phishing, λ = 10−3 (c) a1a, λ = 10−4 (d) w7a, λ = 10−4

Figure 2: First row: Local comparison of FedNL and N0 with (a), (b) ADIANA, DIANA, GD;
with (c), (d) DINGO in terms of communication complexity. Second row: Global comparison of
FedNL-LS, N0-LS and FedNL-CR with (a), (b) ADIANA, DIANA, GD, and GD with line search; with
(c), (d) DINGO in terms of communication complexity. Third row: Local comparison of FedNL
with 3 types of compression operators and NL1 in terms of communication complexity.

5.3 Global convergence

We now compare FedNL-LS, N0-LS, and FedNL-CR with the first-order methods ADIANA and DIANA
with random dithering, Shifted Local gradient descent S-Local-GD, gradient descent (GD), and
GD with line search (GD-LS). Besides, we compare FedNL-LS and FedNL-CR with DINGO. In this
experiment we choose x0 far from the solution x∗, i.e., we test the global convergence behavior; see
Figure 2 (second row). We observe that FedNL-LS is more communication efficient than all first-order
methods and DINGO. However, FedNL-CR is better than GD and GD-LS only. In these experiments
we again include the communication cost of initialization for FedNL-LS and N0-LS.

5.4 Comparison with NL1

Next, we compare FedNL with three type of compression operators: Rank-R (R = 1), Top-K (K = d),
and PowerSGD [Vogels et al., 2019] (R = 1) against NL1 with the Rand-K (K = 1) compressor.
The results, presented in Figure 2 (third row), show that FedNL with Rank-1 compressor performs
the best.

17

References

Foivos Alimisis, Peter Davies, and Dan Alistarh. Communication-efficient distributed optimization
with quantized preconditioners. In International Conference on Machine Learning (ICML), 2021.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Processing
Systems, pages 1709–1720, 2017.

Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with
MATLAB. Society for Industrial and Applied Mathematics, USA, 2014. ISBN 1611973643.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. arXiv preprint arXiv:2002.12410, 2020.

Chih-Chung Chang and Chih-Jen Lin. LibSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

Wenlin Chen, Samuel Horváth, and Peter Richtárik. Optimal client sampling for federated learning.
arXiv preprint arXiv:2010.13723, 2020.

Rixon Crane and Fred Roosta. Dingo: Distributed newton-type method for gradient-norm opti-
mization. In Advances in Neural Information Processing Systems, volume 32, pages 9498–9508,
2019.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: Variance reduction,
sampling, quantization and coordinate descent. In The 23rd International Conference on Artificial
Intelligence and Statistics, 2020a.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated SGD. In 34th Conference on Neural Information Processing Systems (NeurIPS
2020), 2020b.

Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster
non-convex distributed learning with compression. arXiv preprint arXiv:2102.07845, 2021a.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local SGD: Unified theory and new efficient
methods. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2021b.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. SGD: General analysis and improved rates. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 5200–5209, Long Beach, California,
USA, 09–15 Jun 2019. PMLR.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik.
Stochastic distributed learning with gradient quantization and variance reduction. arXiv preprint
arXiv:1904.05115, 2019.

Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed second order methods with fast rates
and compressed communication. arXiv preprint arXiv:2102.07158, 2021.

18

Peter Kairouz et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes SignSGD and other gradient compression schemes. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pages 3252–3261, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for on-device federated
learning. In International Conference on Machine Learning (ICML), 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on
identical and heterogeneous data. In The 23rd International Conference on Artificial Intelligence
and Statistics (AISTATS 2020), 2020.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with
compressed gradients. arXiv preprint arXiv:1806.06573, 2018.

Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016a.

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: strategies for improving communication efficiency. In NIPS
Private Multi-Party Machine Learning Workshop, 2016b.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020a. doi:
10.1109/MSP.2020.2975749.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
descent in distributed and federated optimization. In International Conference on Machine
Learning, 2020b.

Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A double residual compression algorithm for
efficient distributed learning. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2020.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In Interna-
tional Conference on Machine Learning (ICML), 2019.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

19

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Proximal and federated random
reshuffling. arXiv preprint arXiv:2102.06704, 2021a.

Konstantin Mishchenko, Bokun Wang, Dmitry Kovalev, and Peter Richtárik. IntSGD: Floatless
compression of stochastic gradients. arXiv preprint arXiv:2102.08374, 2021b.

Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in heterogeneous settings
for distributed or federated learning with partial participation: tight convergence guarantees.
arXiv preprint arXiv:2006.14591, 2021.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and H. Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Sashank J. Reddi, Jakub Konečný, Peter Richtárik, Barnabás Póczos, and Alexander J. Smola.
AIDE: Fast and communication efficient distributed optimization. CoRR, abs/1608.06879, 2016.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-effcient distributed optimization using
an approximate newton-type method. In Proceedings of the 31th International Conference on
Machine Learning, volume 32, pages 1000–1008, 2014.

S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified SGD with memory. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations (ICLR), 2020.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient
compression for distributed optimization. In Advances in Neural Information Processing Systems
32 (NeurIPS), 2019.

Shusen Wang, Fred Roosta abd Peng Xu, and Michael W Mahoney. GIANT: Globally improved
approximate Newton method for distributed optimization. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Cong Xie, Oluwasanmi Koyejo, Indranil Gupta, and Haibin Lin. Local AdaAlter: Communication-
efficient stochastic gradient descent with adaptive learning rates. arXiv preprint arXiv:1911.09030,
2019.

Jiaqi Zhang, Keyou You, and Tamer Başar. Achieving globally superlinear convergence for distributed
optimization with adaptive newton method. In 2020 59th IEEE Conference on Decision and
Control (CDC), pages 2329–2334, 2020. doi: 10.1109/CDC42340.2020.9304321.

Yuchen Zhang and Xiao Lin. Disco: Distributed optimization for self-concordant empirical loss.
In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 362–370, Lille,
France, 07–09 Jul 2015. PMLR.

20

Appendix

A Theoretical Comparisons with Related Works

In this part, we compare our results with the most relevant prior works in the literature. We start
comparing our work with several recently proposed second order distributed optimization methods
to the following criterias: problem structure, assumptions on the loss functions, communication
complexity (the number of encoding bits sent from client to server in each communication round),
theoretical convergence rate and other aspects of the method (such as local computation and privacy).
Table 4 below provides the summary.

Table 4: Theoretical comparison of 7 second order methods (including ours). Advantages are
written in green, while limitations are colored in red.

Method Problem Assumptions Comm. Cost
per Round Rate Comments

GIANT
[Wang et al., 2018] GLM2

LipC1 Hessian,
convex + l2 reg.,
≈ i.i.d. data

O(d)
Local κ-dependent linear.

Global O(log κ/ε), quadratics
Big data regime
(#data� d)

DINGO
[Crane and Roosta, 2019] GFS3 Moral Smoothness4,

≈ strong convexity5 O(d)
Global linear rate.
No fast local rate.

Operates full gradients,
Hessian-vector products,
Hessian pseudo-inverse
and vector products.

DAN
[Zhang et al., 2020] GFS LipC Hessian,

strong convexity O(nd2)
Global quadratic rate

after O(L/µ2) iterations.
Operates full gradients
and Hessian matrices.

DAN-LA
[Zhang et al., 2020] GFS

LipC Hessian,
LipC gradient,
strong convexity

O(nd)
Asymptotic and implicit
global superlinear rate.

limk→∞
‖xk+1−x∗‖
‖xk−x∗‖

= 0

Independent of κ ?
Better non-asymptotic

complexity over linear rate ?

NL
[Islamov et al., 2021] GLM LipC Hessian,

convex + l2 reg. O(d)

Local superlinear rate
independent of κ,

but dependent on #data.
Global linear rate.

reveals local data to server

Quantized Newton

[Alimisis et al., 2021]
GFS

LipC Hessian,
LipC gradient,

strong convexity5
Õ(d2)

Local (fixed) linear rate.
No global rate.

Operates full gradients
and Hessian matrices.

FedNL (this work) GFS LipC Hessian,
strong convexity O(d)

Local (fixed) linear rate.
Local superlinear rate
independent of κ,

independent of #data.
Global linear rate.

Operates full gradients
and Hessian matrices.
Supports contractive
Hessian compression.

Extensions†
1 LipC = Lipschitz Continuous.
2 GLM = Generalized Linear Model, e.g. lossj(x; aj) = φj(a

>
j x) + λ‖x‖2. 3 GFS = General Finite Sum.

4 Moral Smoothness: ‖∇2f(x)∇f(x)−∇2f(y)∇f(y)‖ ≤ L‖x− y‖. 5 Applies to local loss functions for all clients.
† Partial Participation, Globalization (via Line Search and Cubic Regularization) and Bidirectional Compression.

As we can see from the table, in contrast to FedNL, the other methods suffer at least one of the
following issues:

• Theoretical analysis does not cover general finite sum problems (GIANT and NL).

• Communication cost per client/iteration is high (DAN and Quantized Newton).

• Convergence rate either depends on condition number (GIANT and DINGO) or the number of
data points (NL) or is not explicit/clear (DAN-LA).

• Privacy is broken by directly revealing local training data (NL).

21

We do not compare with algorithms DANE [Shamir et al., 2014] and its accelerated variant
AIDE [Reddi et al., 2016] since they are first-order methods. This means that convergence rates
depend on the conditioning of the problem and hence are worse than what we prove for FedNL.
Moreover, DANE does not work well for heterogeneous datasets - the analysis and experimental
evidence of DANE only shows benefits in a sufficiently homogeneous data regime. On the other
hand, our concern is the heterogeneous data regime typical to FL. We also omit DiSCO [Zhang and
Lin, 2015] from our empirical study because the problem setup is restricted to homogeneous data
distribution regime, generalized linear models and convergence rates depend on the conditioning of
the problem. Furthermore, the authors of DINGO experimentally showed that DINGO outperforms
methods like DiSCO and GIANT, and this is why we focused on comparing to DINGO.

Next, we compare several first and second order methods based on their communication complexity,
defined as the total number of bits sent from a client to the server to achieve some prescribed accuracy
ε. For this purpose, we use sparsification as an example of a compressor in most cases. For all
methods supporting sparsification, we have used the sparsification, which reduces the number of
communicated floats by the factor of d compared to the non-compressed variant of the method. That
is, for gradient based methods DCGD, DIANA and ADIANA, we have used the Rand-1 sparsifier,
which compresses O(d) gradient to O(1).

To transform the local superlinear convergence rate (9) of FedNL into an iteration complexity,
we proceed as follows. Let rk+1 ≤ C(1 − ρ)krk, where rk = ‖xk − x∗‖2, ρ ∈ (0, 1) and C > 0 is
some constant. Note that if k ≥ 2

ρ log 1
C , then (1− ρ)k/2C ≤ 1. Hence, after O(1

ρ) iteration we have
rk+1 ≤ (1− ρ)k/2rk. Unraveling the recursion we get

rk ≤ (1− ρ)
k−1
2 (1− ρ)

k−2
2 . . . (1− ρ)

1
2 r0 = (1− ρ)

k(k−1)
2 r0.

Therefore, FedNL needs O
(√

1
ρ log 1

ε

)
number of iterations to achieve ε-accuracy. For FedNL, we

used step-size α = 1 (see Assumption 3.4(ii) and also (5)) and matrix sparsification described in
Appendix B.3.3, which compresses O(d2) Hessian down to O(d) (i.e., δ = 1

d). With this choice

we get 1
ρ = O(d) and the iteration of FedNL becomes O

(√
d log 1

ε

)
. For Newton Learn (NL),

1
ρ = O(#data), where #data is the number of data points in each device. DAN and Quantized
Newton use their own bespoke ways of compressing communication. Table 5 provides the details,
from which we make the following observations:

• FedNL achieves better communication complexity than Newton whenever d >
log 1

ε

(log log 1
ε)

2 . For example, if we set ε = 10−10, then this requirement means d > 10, and hence is

not restrictive. So, virtually in all situations of practical interest, FedNL is better than Newton.
The improvement is more pronounced with larger d, and is approximately of the size O(

√
d).

So, for d = 106, for example, FedNL finds the solution using approximately 1000 times less
communicated bits than Newton.

• FedNL achieves better communication complexity than Gradient Descent when-
ever κ >

√
d√

log 1
ε

. So, FedNL is better when the condition number κ is large enough. This is

expected, since FedNL complexity does not depend on the condition number. The advantage
of FedNL grows if d or ε are smaller.

22

Table 5: Theoretical comparison of 3 gradient-based and 5 second-order methods. The last column
(communication complexity) is the product of the previous two columns and is the key quantity to
be compared.

Method # Communication Rounds Comm. Cost
per Round

Communication
Complexity

Gradient Descent1 O(κ log 1
ε
) O(d) O(dκ log 1

ε
)

DCGD1

Khirirat et al. [2018] O
(
dσ∗

nµ2
1
ε

log 1
ε

)
O(1) O

(
dσ∗

nµ2
1
ε

log 1
ε

)
DIANA1

Mishchenko et al. [2019] O
((
d+ κ+ κ d

n

)
log 1

ε

)
O(1) O

((
d+ κ+ κ d

n

)
log 1

ε

)
ADIANA1

Li et al. [2020b] O
((

d+
√
κ+

√(
d
n

+
√

d
n

)
dκ

)
log 1

ε

)
O(1) O

((
d+
√
κ+

√(
d
n

+
√

d
n

)
dκ

)
log 1

ε

)
Newton O(log log 1

ε
) O(d2) O(d2 log log 1

ε
)

DAN1

Zhang et al. [2020] O
(
L∗
µ2 + log log 1

ε

)
O(d2) O

(
d2
(
L∗
µ2 + log log 1

ε

))
Quantized Newton

[Alimisis et al., 2021] O(log 1
ε
) Õ(d2) Õ(d2 log 1

ε
)

NL
[Islamov et al., 2021] O

(√
#data

√
log 1

ε

)
O(d) O

(
d
√

#data
√

log 1
ε

)
FedNL

(this work; (7)) O
(
log 1

ε

)
O(d) O

(
d log 1

ε

)
FedNL

(this work; (9)) O
(√

d
√

log 1
ε

)
O(d) O

(
d
√
d
√

log 1
ε

)
1 These methods have global rates. 2 DCGD, DIANA and ADIANA are first order methods.
3 Newton, DAN, Quantized Newton, NL and FedNL are second order methods.
4 κ is the condition number: κ = L

µ
where L is a smoothness constant and µ is the strong convexity constant.

• ADIANA is known to have the state of the art complexity (in the strongly convex regime)
among all first order method, and hence we do not need to compare FedNL to DCGD and
DIANA, which are both inferior to ADIANA. It is clear that FedNL can beat ADIANA as well
since the complexity of ADIANA depends on κ. So, for large enough κ, FedNL is better
than ADIANA. For example, a simple sufficient condition for this to happen is
to require κ > d3 (this can be refined, but the expression will become uglier). Likewise,
FedNL has square root dependence on log 1

ε , and hence it becomes better than ADIANA if ε is
sufficiently small (and other terms are kept constant).

• Neither Quantized Newton nor DAN improve on Newton in communication complexity (but
may be better in practice). We already explained that FedNL improves on Newton.

• We do not include GIANT in the table since GIANT does not work in the heterogeneous data
regime, which is critical to FL and our paper. We do not include DINGO in the table since its
rate depends on various iterate-dependent assumptions which make the analysis convoluted. It
is not clear that such assumptions can actually be satisfied. Their rates are not explicit - it is
not possible to compare to them.

It worths noting that our work is not just about communication complexity. In fact, our
contributions go far beyond this, and we make it clear in the paper. Our work is the first serious
attempt to make second order methods applicable to federated learning in the sense that we address
many issues which previously made second order methods inapplicable to FL. We support compression
of matrices, rudimentary privacy protection (by not revealing data), partial participation, compression
of (Hessian corrected) gradients, compression of model (at the master), arbitrary (strongly convex)

23

finite sum problems rather than generalized linear models only, arbitrary contractive compressors,
two globalization strategies and more. The best way to judge our contribution to the literature is
via comparison to the NewtonLearn work of Islamov et al. [2021] as their work is the closest work to
ours and was the SOTA second order method supporting communication compression before our
work. We have made a very detailed comparison to their work, including tables.

B Extra Experiments

We carry out numerical experiments to study the performance of FedNL, and compare it with various
state-of-the-art methods in federated learning. We consider the following problem

min
x∈Rd

{
1

n

n∑
i=1

fi(x) +
λ

2
‖x‖2

}
, fi(x) =

1

m

m∑
j=1

log
(

1 + exp(−bija>ijx)
)
, (12)

where {aij , bij}j∈[m] are data points at the i-th device.

B.1 Data sets

The datasets were taken from LibSVM library [Chang and Lin, 2011]: a1a, a9a, w7a, w8a, phishing.
We partitioned each data set across several nodes to capture a variety of scenarios. See Table 6 for
more detailed description of data sets settings.

Table 6: Data sets used in the experiments with the number of worker nodes n used in each case.

Data set # workers n # data points (= nm) # features d

a1a 16 1600 123

a9a 80 32560 123

w7a 50 24600 300

w8a 142 49700 300

phishing 100 110 68
madelon 10 2000 500

B.2 Parameters setting

In all experiments we use theoretical parameters for gradient type methods (except those with line
search procedure): vanilla gradient descent, DIANA [Mishchenko et al., 2019], ADIANA [Li et al.,
2020b], and Shifted Local gradient descent [Gorbunov et al., 2021b]. The constants for DINGO
[Crane and Roosta, 2019] are set as the authors did: θ = 10−4, φ = 10−6, ρ = 10−4. Backtracking
line search for DINGO selects the largest stepsize from {1, 2−1, . . . , 2−10}. The initialization of H0

i

for NL1 [Islamov et al., 2021], FedNL, FedNL-LS, and FedNL-PP is ∇2fi(x
0), and for FedNL-CR is 0.

We conduct experiments for two values of regularization parameter λ ∈ {10−3, 10−4}. In the
figures we plot the relation of the optimality gap f(xk)− f(x∗) and the number of communicated
bits per node or the number of communication rounds. The optimal value f(x∗) is chosen as the
function value at the 20-th iterate of standard Newton’s method.

24

B.3 Compression operators

Here we describe four compression operators that are used in our experiments.

B.3.1 Random dithering for vectors

For first order methods ADIANA and DIANA we use random dithering operator [Alistarh et al., 2017,
Horváth et al., 2019]. This compressor with s levels is defined via the following formula

C(x) := sign(x) · ‖x‖q ·
ξs
s
, (13)

where ‖x‖q := (
∑

i |xi|q)
1/q and ξs ∈ Rd is a random vector with i-th element defind as follows

(ξs)i =

{
l + 1 with probability |xi|

‖x‖q s− l,
l otherwise.

(14)

Here s ∈ N+ denotes the levels of rounding, and l satisfies |xi|‖x‖q ∈
[
l
s ,

l+1
s

]
. According to [Horváth

et al., 2019], this compressor has the variance parameter ω ≤ 2 + d1/2+d1/q

s . However, for standard

euclidean norm (q = 2) one can improve the bound by ω ≤ min
{
d
s2
,
√
d
s

}
[Alistarh et al., 2017].

B.3.2 Rank-R compression operator for matrices

Our theory supports contractive compression operators; see Definition 3.3. In the experiments for
FedNL we use Rank-R compression operator. Let X ∈ Rd×d and UΣV> be the singular value
decomposition of X:

X =

d∑
i=1

σiuiv
>
i , (15)

where the singular values σi are sorted in non-increasing order: σ1 ≥ σ2 ≥ · · · ≥ σd. Then, the
Rank-R compressor, for R ≤ d, is defined by

C(X) :=

R∑
i=1

σiuiv
>
i . (16)

Note that

‖X‖2F
(15)
=

∥∥∥∥∥
d∑
i=1

σiuiv
>
i

∥∥∥∥∥
2

F

=
d∑
i=1

σ2
i

and

‖C(X)−X‖2F
(15)+(16)

=

∥∥∥∥∥
d∑

i=R+1

σiuiv
>
i

∥∥∥∥∥
2

F

=
d∑

i=R+1

σ2
i .

Since 1
d−R

∑d
i=R+1 σ

2
i ≤ 1

d

∑d
i=1 σ

2
i , we have

‖C(X)−X‖2F ≤
d−R
d
‖X‖2F =

(
1− R

d

)
‖X‖2F,

25

and hence the Rank-R compression operator belongs to C(δ) with δ = R
d . In case when X ∈ Sd, we

have ui = vi for all i ∈ [d], and Rank-R compressor on matrix X transforms to
∑R

i=1 σiuiu
>
i , i.e.,

the output of Rank-R compressor is automatically a symmetric matrix, too.

B.3.3 Top-K compression operator for matrices

Another example of contractive compression operators is Top-K compressor for matrices. For
arbitrary matrix X ∈ Rd×d let sort its entires in non-increasing order by magnitude, i.e., Xik,jk is
the k-th maximal element of X by magnitude. Let’s {Eij}di,j=1 me matrices for which

(Eij)ps :=

{
1, if (p, s) = (i, j),

0, otherwise.
(17)

Then, the Top-K compression operator can be defined via

C(X) :=

K∑
k=1

Xik,jkEik,jk . (18)

This compression operator belongs to C(δ) with δ = K
d2
. If we need to keep the output of Top-K on

symmetric matrix X to be symmetric matrix too, then we apply Top-K compressor only on lower
triangular part of X.

B.3.4 Rand-K compression operator for matrices

Our theory also supports unbiased compression operators; see Definition 3.2. One of the examples
is Rand-K. For arbitrary matrix X ∈ Rd×d we choose a set SK of indexes (i, j) of cardinality K
uniformly at random. Then Rand-K compressor can be defined via

C (X)ij :=

{
d2

KXij if (i, j) ∈ SK ,
0 otherwise.

(19)

This compression operator belongs to B(ω) with ω = d2

K − 1. If we need to make the output of this
compressor to be symmetric matrix, then we apply this compressor only on lower triangular part of
the input.

B.4 Projection onto the cone of positive definite matrices

If one uses FedNL with Option 1, then we need to project onto the cone of symmetric and positive
definite matrices with constant µ:

{M ∈ Rd×d : M> = M, M � µI}.

The projection of symmetric matrix X onto the cone of positive semidefinite matrices can by
computed via

[X]0 :=

d∑
i=1

max{λi, 0}uiu>i , (20)

26

211 213 215 217 219

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

R= 1

R= 2

R= 4

R= 8

R= 16

R= 32

211 213 215 217 219

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

R= 1

R= 2

R= 4

R= 8

R= 16

R= 32

213 214 215 216 217 218 219 220 221

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

R= 1

R= 2

R= 4

R= 8

R= 16

R= 32

212 213 214 215 216 217 218 219 220

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

R= 1

R= 2

R= 4

R= 8

R= 16

R= 32

a1a, λ = 10−3 a1a, λ = 10−4 a9a, λ = 10−3 a9a, λ = 10−4

211 213 215 217 219

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

K= d

K= 2d

K= 4d

K= 8d

K= 16d

K= 32d

211 213 215 217 219

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

K= d

K= 2d

K= 4d

K= 8d

K= 16d

K= 32d

213 215 217 219 221 223

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

K= d

K= 2d

K= 4d

K= 8d

K= 16d

K= 32d

211 213 215 217 219 221 223

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

K= d

K= 2d

K= 4d

K= 8d

K= 16d

K= 32d

phishing, λ = 10−3 phishing, λ = 10−4 w7a, λ = 10−3 w8a, λ = 10−3

213 215 217 219 221

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

R= 1

R= 2

R= 4

R= 8

R= 16

R= 32

211 213 215 217 219 221

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

R= 1

R= 2

R= 4

R= 8

R= 16

R= 32

213 214 215 216 217 218 219 220 221 222

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

R= 1

R= 2

R= 4

R= 8

R= 16

R= 32

213 214 215 216 217 218 219 220 221 222

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

R= 1

R= 2

R= 4

R= 8

R= 16

R= 32

a1a, λ = 10−3 a1a, λ = 10−4 a9a, λ = 10−3 a9a, λ = 10−4

Figure 3: The performance of FedNL with different types of compression operators: Rank-R (first
row); Top-K (second row); PowerSGD of rank R (third row) for several values of R and K in terms
of communication complexity.

where
∑

i λiuiu
>
i is an eigenvalue decomposition of X. Using the projection onto the cone of positive

semidefinite matrices we can define the projection onto the cone of positive definite matrices with
constant µ via

[X]µ := [X− µI]0 + µI. (21)

B.5 The effect of compression

First, we investigate how the level of compression influences the performance of FedNL; see Figure 3.
Here we study the performance for three types of compression operators: Rank-R, Top-K, and
PowerSGD of rank R. According to numerical experiments, the smaller parameter is, the better
performance of FedNL is. This statement is true for all three types of compressors.

B.6 Comparison of Options 1 and 2

In our next experiment we investigate which Option (1 or 2) for FedNL with Rank-R and stepsize
α = 1 compressor demonstrates better results in terms of communication compexity. According
to the results in Figure 4, we see that FedNL with projection (Option 1) is more communication
effective than that with Option 2. However, Option 1 requires more computing resources.

27

211 213 215 217 219

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Option 1, Rank-R,R= 1

Option 1, Rank-R,R= 2

Option 1, Rank-R,R= 4

Option 2, Rank-R,R= 1

Option 2, Rank-R,R= 2

Option 2, Rank-R,R= 4

29 211 213 215 217 219

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Option 1, Rank-R,R= 1

Option 1, Rank-R,R= 2

Option 1, Rank-R,R= 4

Option 2, Rank-R,R= 1

Option 2, Rank-R,R= 2

Option 2, Rank-R,R= 4

29 211 213 215 217

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Option 1, Rank-R,R= 1

Option 1, Rank-R,R= 2

Option 1, Rank-R,R= 4

Option 2, Rank-R,R= 1

Option 2, Rank-R,R= 2

Option 2, Rank-R,R= 4

25 28 211 214 217 220

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Option 1, Rank-R,R= 1

Option 1, Rank-R,R= 2

Option 1, Rank-R,R= 4

Option 2, Rank-R,R= 1

Option 2, Rank-R,R= 2

Option 2, Rank-R,R= 4

a1a, λ = 10−3 a9a, λ = 10−3 phishing, λ = 10−4 w7a, λ = 10−4

Figure 4: The performance of FedNL with Options 1 and 2 in terms of communication complexity.

211 213 215 217 219 221

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Rank-R,R= 1

Top-K,K= d

PowerSGD, R= 1

Rank-R,R= 2

Top-K,K= 2d

PowerSGD, R= 2

211 213 215 217 219

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Rank-R,R= 1

Top-K,K= d

PowerSGD, R= 1

Rank-R,R= 2

Top-K,K= 2d

PowerSGD, R= 2

211 213 215 217 219

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Rank-R,R= 1

Top-K,K= d

PowerSGD, R= 1

Rank-R,R= 2

Top-K,K= 2d

PowerSGD, R= 2

211 212 213 214 215 216 217 218 219

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Rank-R,R= 1

Top-K,K= d

PowerSGD, R= 1

Rank-R,R= 2

Top-K,K= 2d

PowerSGD, R= 2

w8a, λ = 10−3 a1a, λ = 10−4 phishing, λ = 10−3 a9a, λ = 10−4

Figure 5: Comparison of the performance of FedNL with different compression operators in terms
of communication complexity.

B.7 Comparison of different compression operators

Next, we study which compression operator is better in terms of communication complexity. Based
on the results in Figure 5, we can conclude that Rank-R is the best compression operator; Top-K
and PowerSGD compressors can beat each other in different cases.

B.8 Comparison of different update rules for Hessians

On the following step we compare FedNL with three update rules for Hessians in order to find the
best one. They are biased Top-K compression operator with stepsize α = 1 (Option 1); biased
Top-K compression operator with stepsize α = 1−

√
1− δ; unbiased Rand-K compression operator

with stepsize α = 1
ω+1 . The results of this experiment are presented in Figure 6. Based on them,

we can make a conclusion that FedNL with Top-K compressor and stepsize α = 1 demonstrates
the best performance. FedNL with Rand-K compressor and stepsize α = 1

ω+1 performs a little bit
better than that with Top-K compressor and stepsize α = 1−

√
1− δ. As a consequence, we will

use biased compression operator with stepsize α = 1 for FedNL in further experiments.

B.9 Bidirectional compression

Now we study how the performance of FedNL-BC (with Option 1 and stepsize α = 1) is affected
by the level of compression in Figure 7. Here we use Top-K compressor for Hessians and models,
and broadcast gradients with probability p. In order to make the results more interpretable, we
set K to be pd, then we carry out experiments for several values of p. We clearly see that deep
compression (p = 0.5; 0.6) influences negatively the performance of FedNL-BC. However, small
compression (p = 0.9) can be beneficial in some cases (see Figure 7: (b), (d)), but this is not the case

28

0 10 20 30
communication rounds

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Option 1, Top-K,K= d

Option 2, Top-K,K= d

Option 3, Rand-K,K= d

0 10 20 30
communication rounds

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Option 1, Top-K,K= d

Option 2, Top-K,K= d

Option 3, Rand-K,K= d

0 10 20 30
communication rounds

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Option 1, Top-K,K= d

Option 2, Top-K,K= d

Option 3, Rand-K,K= d

0 10 20 30
communication rounds

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

Option 1, Top-K,K= d

Option 2, Top-K,K= d

Option 3, Rand-K,K= d

(a) a1a, λ = 10−3 (b) a9a, λ = 10−3 (c) phishing, λ = 10−3 (d) w7a, λ = 10−3

Figure 6: Comparison of FedNL with three update rules: Top-K,α = 1 −
√

1− δ (Option 1);
Top-K,α = 1 (Option 2); Rand-K,α = 1

ω+1 (Option 3) in terms of iteration complexity.

213 215 217 219 221

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

K= 0.5d, p= 0.5

K= 0.6d, p= 0.6

K= 0.7d, p= 0.7

K= 0.8d, p= 0.8

K= 0.9d, p= 0.9

K= d, p= 1

214 215 216 217 218 219 220 221

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

K= 0.5d, p= 0.5

K= 0.6d, p= 0.6

K= 0.7d, p= 0.7

K= 0.8d, p= 0.8

K= 0.9d, p= 0.9

K= d, p= 1

210 212 214 216 218 220

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

K= 0.5d, p= 0.5

K= 0.6d, p= 0.6

K= 0.7d, p= 0.7

K= 0.8d, p= 0.8

K= 0.9d, p= 0.9

K= d, p= 1

212 213 214 215 216 217 218 219 220

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

K= 0.5d, p= 0.5

K= 0.6d, p= 0.6

K= 0.7d, p= 0.7

K= 0.8d, p= 0.8

K= 0.9d, p= 0.9

K= d, p= 1

(a) w7a, λ = 10−3 (b) w8a, λ = 10−3 (c) a1a, λ = 10−4 (d) a9a, λ = 10−4

Figure 7: The performance of FedNL-BC with Top-K applied to Hessians and models (K = pd),
and broadcasting gradients with probability p for several values of p in terms of communication
complexity.

for Figure 7: (a), (c), where the best performance is demonstrated by FedNL-BC with p = 1. We can
conclude that only weak compression (the value of p is close to 1) can improve the performance of
FedNL-BC, but the improvement is relatively small.

We also compare FedNL-BC (compression was described above, Option 2 was used in the
experiments) with DORE method [Liu et al., 2020]. This method applies bi-directional compression
on gradients (uplink compression) and models (downlink compression). All constants for this method
were chosen according theoretical results in the paper. We use random dithering compressor in
both directions (s =

√
d). Based on the numerical experiments in Figure 8, we can conclude that

FedNL-BC is much more communication efficient method than DORE by many orders in magnitude.

FedNL-BC, Top-K, K= 0.8d, p= 0.8 FedNL-BC, Top-K, K= 0.9d, p= 0.9 FedNL-BC, Top-K, K= d, p= 1 DORE, RD, s=
√
d

216 220 224

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

216 220 224

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

216 220 224 228

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

212 216 220 224 228

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

(a) w7a, λ = 10−3 (b) w8a, λ = 10−3 (c) a1a, λ = 10−4 (d) a9a, λ = 10−4

Figure 8: Comparison of FedNL-BC with Top-K applied to Hessians and models (K = pd), and
broadcasting gradients with probability p and DORE in terms of communication complexity.

29

0 25 50 75 100
communication rounds

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

τ= 0.2n

τ= 0.4n

τ= 0.6n

τ= 0.8n

τ=n

0 100 200 300 400
communication rounds

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

τ= 0.2n

τ= 0.4n

τ= 0.6n

τ= 0.8n

τ=n

0 100 200 300
communication rounds

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

τ= 0.2n

τ= 0.4n

τ= 0.6n

τ= 0.8n

τ=n

0 100 200 300 400
communication rounds

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

τ= 0.2n

τ= 0.4n

τ= 0.6n

τ= 0.8n

τ=n

(a) phishing, λ = 10−3 (b) w8a, λ = 10−3 (c) w7a, λ = 10−4 (d) a9a, λ = 10−4

Figure 9: The performance of FedNL-PP with Rank-1 compressor in terms of iteration complexity.

B.10 The performance of FedNL-PP

Now we deploy our FedNL-PP method in order to study how the performance is inlfuenced by the
value of active nodes τ . We use FedNL-PP with Rank-1 compression operator, and run the method
for several values of τ ; see Figure 9. As we can see, the smaller value of τ is, the worse performance
of FedNL-PP is, as it expected.

Now we compare FedNL-PP with Artemis [Philippenko and Dieuleveut, 2021] which supports
partial participation too. We use random sparsification compressor (s =

√
d) in uplink direction,

and the server broadcasts descent direction to each node without compression. All contstants of
the method were chosen according theory from the paper. Each node i computes full local gradient
∇fi(xk). We conduct experiments for several number of active nodes: τ ∈ {0.2n, 0.4n, 0.8n}, then
we calculate the total number of transmitted bits received by the server from all active nodes. All
results are presented in Figure 10. We clearly see that FedNL-PP outperforms Artemis by several
orders in magnitude in terms of communication complexity.

FedNL-PP, Rank-R, R= 1, τ= 0.2n FedNL-PP, Rank-R, R= 1, τ= 0.4n FedNL-PP, Rank-R, R= 1, τ= 0.8n Artemis, RD, s=
√
d , τ= 0.2n Artemis, RD, s=

√
d , τ= 0.4n Artemis, RD, s=

√
d , τ= 0.8n

210 214 218 222 226 230

communicated bits

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

210 213 216 219 222 225 228

communicated bits

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

210 214 218 222 226 230 234

communicated bits

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

210 214 218 222 226 230

communicated bits

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

(a) w8a, λ = 10−3 (b) phishing, λ = 10−3 (c) w7a, λ = 10−4 (d) a1a, λ = 10−4

Figure 10: Comparison of FedNL-PP with Artemis in terms of communication complexity for several
values of active nodes τ .

B.11 Comparison with NL1

In our next experiment we compare FedNL with three types of compression operators (Rank-R, Top-
K, PowerSGD) and NL1. As we can see in Figure 11, FedNL with Rank-1 are more communication
efficient method in all cases. FedNL with Top-d and PowerSGD of rank 1 compressors performs
better or the same as NL1 in almost all cases, except Figure 11: (c), where FedNL with PowerSGD
demonstrates a little bit worse results than NL1. Based on these experiments, we can conclude that
new compression mechanism for Hessians is more effective than that was introduced in [Islamov

30

et al., 2021].

212 213 214 215 216 217 218 219 220

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

NL1, Rand-K,K= 1

FedNL, Rank-R,R= 1

FedNL, Top-K,K= d

FedNL, PowerSGD, R= 1

28 210 212 214 216 218

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

NL1, Rand-K,K= 1

FedNL, Rank-R,R= 1

FedNL, Top-K,K= d

FedNL, PowerSGD, R= 1

210 212 214 216 218

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

NL1, Rand-K,K= 1

FedNL, Rank-R,R= 1

FedNL, Top-K,K= d

FedNL, PowerSGD, R= 1

29 213 217 221 225

communicated bits per node

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

NL1, Rand-K,K= 1

FedNL, Rank-R,R= 1

FedNL, Top-K,K= d

FedNL, PowerSGD, R= 1

(a) w8a, λ = 10−3 (b) phishing, λ = 10−3 (c) a1a, λ = 10−4 (d) w7a, λ = 10−4

Figure 11: Comparison of FedNL with three types of compression and NL1 in terms of communication
complexity.

B.12 Local comparison

Now we compare FedNL (Rank-1 compressor, α = 1) and N0 with first order methods: ADIANA with
random dithering (ADIANA, RD, s =

√
d), DIANA with random dithering (DIANA, RD, s =

√
d),

Shifted Local gradient descent (S-Local-GD, p = q = 1
n), and vanilla gradient descent (GD). Here we

set x0 close to the solution x∗ in order to highlight fast local rates of FedNL and N0 independent of
the condition number. Moreover, we compare FedNL (Rank-1 compressor, α = 1) against DINGO. In
order to make fair comparison we calculate transmitted bits in both directions, since DINGO requires
several expensive communication round per one iteration of the algorithm. All results are presented
in Figure 12. We clearly see that FedNL and N0 are more communication effective methods than
gradient type ones. In some cases the difference is large; see Figure 12: (a), (d). In addition FedNL
is more effective than DINGO in terms of communication complexity.

21 25 29 213 217 221 225

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
N0
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

24 27 210 213 216 219 222 225

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
N0
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

25 29 213 217 221 225 229

communicated bits per node

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
N0
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

21 25 29 213 217 221 225

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

N0
ADIANA, RD, s=

√
d

DIANA, RD, s=
√
d

GD
S-Local-GD, p= q= 1

n

(a) a1a, λ = 10−3 (b) w8a, λ = 10−3 (c) w7a, λ = 10−4 (d) phishing, λ = 10−4

21 24 27 210 213 216 219 222

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

21 24 27 210 213 216 219 222

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

211 213 215 217 219 221

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

213 215 217 219 221 223 225

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

(a) a1a, λ = 10−3 (b) phishing, λ = 10−3 (c) a9a, λ = 10−4 (d) w7a, λ = 10−4

Figure 12: First row: Local comparison of FedNL and N0 with ADIANA, DIANA, S-Local-GD, and
GD in terms of communication complexity. Second row: Local comparison of FedNL with DINGO
in terms of communication complexity.

31

B.13 Global compersion

In our next test we compare FedNL-LS (Rank-1 compressor, α = 1), N0-LS, and FedNL-CR (Rank-1
compressor, α = 1) with gradient type methods such as ADIANA with random dithering (ADIANA,
RD, s =

√
d), DIANA with random dithering (DIANA, RD, s =

√
d), Shifted Local gradient descent

(S-Local-GD, p = q = 1
n), vanilla gradient descent (GD), and gradient descent with line search (GD-LS).

Besides, we compare FedNL-LS (Rank-1 compressor, α = 1) and FedNL-CR (Rank-1 compressor,
α = 1) with DINGO. Since DINGO requires several expensive communication round per iteration,
we calculate transmitted bits in both directions to make fair comparison. According to numerical
experiments, we can conclude that FedNL-LS and N0-LS are more communication effective methods
than gradient type ones. In some cases (see Figure 13: (c), (d)) FedNL-CR performs better or the
same as DIANA.

22 25 28 211 214 217 220 223 226

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
) N0-LS

FedNL-LS, Rank-R;R=1
FedNL-CR, Rank-R;R=1
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
GD-LS
S-Local-GD, p= q= 1

n

21 24 27 210 213 216 219 222 225 228

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

N0-LS
FedNL-LS, Rank-R;R=1
FedNL-CR, Rank-R;R=1
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
GD-LS
S-Local-GD, p= q= 1

n

21 25 29 213 217 221 225 229

communicated bits per node

101

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

N0-LS
FedNL-LS, Rank-R;R=1
FedNL-CR, Rank-R;R=1
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
GD-LS
S-Local-GD, p= q= 1

n

21 25 29 213 217 221 225 229

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

N0-LS
FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

ADIANA, RD, s=
√
d

DIANA, RD, s=
√
d

GD
GD-LS
S-Local-GD, p= q= 1

n

(a) a9a, λ = 10−3 (b) w7a, λ = 10−3 (c) a1a, λ = 10−4 (d) phishing, λ = 10−4

24 27 210 213 216 219 222 225

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL-LS, Rank-R,R= 1

FedNL-LS, Rank-R,R= 1

DINGO

24 27 210 213 216 219 222

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

DINGO

27 210 213 216 219 222 225

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

DINGO

27 210 213 216 219 222 225 228

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

DINGO

(a) w7a, λ = 10−3 (b) phishing, λ = 10−3 (c) a9a, λ = 10−4 (d) a1a, λ = 10−4

Figure 13: First row: Global comparison of FedNL-LS, N0-LS, and FedNL-CR with ADIANA,
DIANA, S-Local-GD, GD, and GD-LS in terms of communication complexity. Second row: Global
comparison of FedNL-LS and FedNL-CR with DINGO in terms of communication complexity.

B.14 Effect of statistical heterogeneity

In this set of experiments we investigate the performance of FedNL under different level of heterogeneity
of data. We generate synthethic data via rules as [Li et al., 2018] did. We set number of nodes
n = 30, the size of local data m = 200, the dimension of the problem d = 100, and regularization
parameter λ = 10−3.

The generation rules for non-IID synthetic data have two positive parameteres α, β. For each
node i ∈ [n] let Bi ∼ N (0, β). We use diagonal covariance matrix Σ with Σj,j = j−1.2, and mean
vector vi, each element of which is generated from N (Bi, 1) in order to get feature vector aij ∈ Rd
from N (vi,Σ). Let ui ∼ N (0, α), ci ∼ N (ui, 1), then we generate vector wi ∈ Rd each entire of
which is sampled from N (ui, 1). Let pij = σ

(
w>i aij + ci

)
, where σ(·) is a sigmoid function. Finally

the label bij is equal to −1 with probability pij , and is equal to +1 with probability 1 − pij . We
denote the data which is generated following the rules above as Synthetic (α, β).

32

In addition, we generate IID data where w ∼ N (0, 1) and c ∼ N (0, 1) are sampled only once
and used for each node i. Feature vectors aij is generated from N (vi,Σ), where each element of vi is
equal to Bi ∼ N (0, β). The label bij is equal to −1 with probability pij = σ(w>aij + c), and +1
otherwise. We denote such data as IID.

Using generated synthetic datasets we compare local performance of FedNL (Rank-1 compressor,
α = 1, Option 2), ADIANA with random dithering (ADIANA, RD, s =

√
d), DIANA with random

dithering (DIANA, RD, s =
√
d), Shifted Local gradient descent (S-Local-GD, p = q = 1

n), and vanilla
gradient descent (GD) in terms of communication complexit; see Figure 14 (first row). Besides,
we compare FedNL and DINGO; see Figure 14 (second row). According to the results, we see that
the difference between FedNL and gradient type methods is getting larger, when the local data is
becoming more heterogeneous; FedNL outperforms other methods by several orders in magnitude.
FedNL is more stable varying data heterogeneity than DINGO. The difference between these two
methods on IID data is small; when data is becoming more heterogeneous, the difference is increasing
dramatically.

25 29 213 217 221 225

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

21 25 29 213 217 221 225 229

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

21 25 29 213 217 221 225 229

communicated bits per node

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

21 25 29 213 217 221 225 229

communicated bits per node

10¡1

10¡3

10¡5

10¡7

10¡9

10¡11

10¡13

10¡15

f(
x
k
)
¡
f(
x
¤
)

FedNL, Rank-R;R=1
ADIANA, RD, s=

p
d

DIANA, RD, s=
p
d

GD
S-Local-GD, p= q= 1

n

(a) IID (b) Synthetic (0.5, 0.5) (c) Synthetic (0.75, 0.75) (d) Syntethic (1, 1)

21 24 27 210 213 216 219 222

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

21 24 27 210 213 216 219 222 225 228

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

21 24 27 210 213 216 219 222 225 228

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

21 24 27 210 213 216 219 222 225 228

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

(a) IID (b) Synthetic (0.5, 0.5) (c) Synthetic (0.75, 0.75) (d) Syntethic (1, 1)

Figure 14: First row: Local comparison of FedNL, with ADIANA, DIANA, S-Local-GD, and GD
in terms of communication complexity. Second row: Local comparison of FedNL with DINGO in
terms of communication complexity.

C Proofs of Results from Section 3

C.1 Auxiliary lemma

Denote by Ek [·] the conditional expectation given kth iterate xk. We first develop a lemma to handle
different cases of compressors for Ek‖Hk

i + αCki (∇2fi(y)−Hk
i)−∇2fi(z)‖2F, where Ek[y] = y and

Ek[z] = z.

Lemma C.1. For any y, z ∈ Rd such that Ek[y] = y and Ek[z] = z, we have the following results
in different cases.

33

(i) If Cki ∈ B(ω) and α ≤ 1
ω+1 , then

Ek
[
‖Hk

i + αCki (∇2fi(y)−Hk
i)−∇2fi(z)‖2F

]
≤ (1− α)‖Hk

i −∇2fi(z)‖2F + αL2
F‖y − z‖2.

(ii) If Cki ∈ C(δ) and α = 1−
√

1− δ, then

Ek
[
‖Hk

i + αCki (∇2fi(y)−Hk
i)−∇2fi(z)‖2F

]
≤ (1− α2)

∥∥∥Hk
i −∇2fi(z)

∥∥∥2

F
+ αL2

F‖y − z‖2.

(iii) If Cki ∈ C(δ) and α = 1, then

Ek
[
‖Hk

i + αCki (∇2fi(y)−Hk
i)−∇2fi(z)‖2F

]
≤
(

1− δ

4

)
‖Hk

i −∇2fi(z)‖2F +

(
6

δ
− 7

2

)
L2

F‖y − z‖2.

Using the notation from (5), we can unify the above three cases into

Ek
[
‖Hk

i + αCki (∇2fi(y)−Hk
i)−∇2fi(z)‖2F

]
≤ (1−A) ‖Hk

i −∇2fi(z)‖2F +BL2
F‖y − z‖2.

Proof. Let
LHS := Ek

[
‖Hk

i + αCki (∇2fi(y)−Hk
i)−∇2fi(z)‖2F

]
be the left hand side appearing in these inequalities.

(i). If Cki ∈ B(ω), then

LHS = ‖Hk
i −∇2fi(z)‖2F + 2α〈Hk

i −∇2fi(z),∇2fi(y)−Hk
i 〉+ α2Ek‖Cki (∇2fi(y)−Hk

i)‖2F
≤ ‖Hk

i −∇2fi(z)‖2F + 2α〈Hk
i −∇2fi(z),∇2fi(y)−Hk

i 〉+ α2(ω + 1)‖Hk
i −∇2fi(y)‖2F.

Using the stepsize restriction α ≤ 1
ω+1 , we can bound α2(ω + 1) ≤ α. Plugging this back to the

above inequality and using the identity 2 〈A,B〉F + ‖B‖2F = −‖A‖2F + ‖A + B‖2F, we get

LHS ≤ ‖Hk
i −∇2fi(z)‖2F + 2α〈Hk

i −∇2fi(z),∇2fi(y)−Hk
i 〉+ α‖Hk

i −∇2fi(y)‖2F
= (1− α)‖Hk

i −∇2fi(z)‖2F + α‖∇2fi(y)−∇2fi(z)‖2F
≤ (1− α)‖Hk

i −∇2fi(z)‖2F + αL2
F‖y − z‖2.

(ii). Let Cki ∈ C(δ) and α = 1−
√

1− δ. Denote

A := Hk
i −∇2fi(z), B := ∇2fi(y)−Hk

i .

Then

LHS =
∥∥∥A + αCki (B)

∥∥∥2

F

= ‖A‖2F + 2α
〈
A, Cki (B)

〉
F

+ α2‖Cki (B)‖2F

≤ ‖A‖2F + 2α 〈A,B〉F + 2α
〈
A, Cki (B)−B

〉
F

+ α2‖B‖2F

≤ ‖A‖2F + 2α 〈A,B〉F + 2α‖A‖F‖Cki (B)−B‖F + α2‖B‖2F
≤ ‖A‖2F + 2α 〈A,B〉F + 2α

√
1− δ‖A‖F‖B‖F + α2‖B‖2F

≤ ‖A‖2F + 2α 〈A,B〉F + α
√

1− δ
(
‖A‖2F + ‖B‖2F

)
+ α2‖B‖2F

≤ (1 + α
√

1− δ) ‖A‖2F + 2α 〈A,B〉F + (α
√

1− δ + α2)‖B‖2F.

34

Since α = 1 −
√

1− δ, we have α
√

1− δ + α2 = α. Using the identity 2 〈A,B〉F + ‖B‖2F =
−‖A‖2F + ‖A + B‖2F, we get

LHS ≤ (1 + α
√

1− δ) ‖A‖2F + 2α 〈A,B〉F + α‖B‖2F
= (1 + α

√
1− δ − α) ‖A‖2F + α‖A + B‖2F

= (1− α2) ‖A‖2F + α‖A + B‖2F

= (1− α2)
∥∥∥Hk

i −∇2fi(z)
∥∥∥2

F
+ α‖∇2fi(y)−∇2fi(z)‖2F

≤ (1− α2)
∥∥∥Hk

i −∇2fi(z)
∥∥∥2

F
+ αL2

F‖y − z‖2.

(iii). If Cki ∈ C(δ) and α = 1, we have

LHS = ‖Hk
i + Cki (∇2fi(y)−Hk

i)−∇2fi(z)‖2F
= ‖Hk

i −∇2fi(y) + Cki (∇2fi(y)−Hk
i) +∇2fi(y)−∇2fi(z)‖2F

≤ (1 + β)‖Hk
i −∇2fi(y) + Cki (∇2fi(y)−Hk

i)‖2F +

(
1 +

1

β

)
‖∇2fi(y)−∇2fi(z)‖2F

≤ (1 + β)(1− δ)‖Hk
i −∇2fi(y)‖2F +

(
1 +

1

β

)
‖∇2fi(y)−∇2fi(z)‖2F,

where we use Young’s inequality in the first inequality for some β > 0, and use the contraction
property in the last inequality. By choosing β = δ

2(1−δ) when 0 < δ < 1, we can get

LHS ≤
(

1− δ

2

)
‖Hk

i −∇2fi(y)‖2F +

(
2

δ
− 1

)
‖∇2fi(y)−∇2fi(z)‖2F

≤
(

1− δ

2

)
‖Hk

i −∇2fi(y)‖2F +

(
2

δ
− 1

)
L2

F‖y − z‖2.

When δ = 1,
LHS = ‖∇2fi(y)−∇2fi(z)‖2F ≤ L2

F‖y − z‖2.

Overall, for any 0 < δ ≤ 1 we have

LHS ≤
(

1− δ

2

)
‖Hk

i −∇2fi(y)‖2F +

(
2

δ
− 1

)
L2

F‖y − z‖2

≤ (1 + β)

(
1− δ

2

)
‖Hk

i −∇2fi(z)‖2F +

(
1 +

1

β

)(
1− δ

2

)
‖∇2fi(y)−∇2fi(z)‖2F

+

(
2

δ
− 1

)
L2

F‖y − z‖2.

By choosing β = δ
4−2δ , we arrive at

LHS ≤
(

1− δ

4

)
‖Hk

i −∇2fi(z)‖2F +

(
4

δ
+
δ

2
− 3 +

2

δ
− 1

)
L2

F‖y − z‖2

≤
(

1− δ

4

)
‖Hk

i −∇2fi(z)‖2F +

(
6

δ
− 7

2

)
L2

F‖y − z‖2.

35

C.2 Proof of Theorem 3.6

We derive recurrence relation for ‖xk − x∗‖2 covering both options of updating the global model. If
Option 1. is used in FedNL, then

‖xk+1 − x∗‖2 =

∥∥∥∥xk − x∗ − [Hk
µ

]−1
∇f(xk)

∥∥∥∥2

≤
∥∥∥∥[Hk

µ

]−1
∥∥∥∥2 ∥∥∥Hk

µ(xk − x∗)−∇f(xk))
∥∥∥2

≤ 2

µ2

(∥∥∥(Hk
µ −∇2f(x∗)

)
(xk − x∗)

∥∥∥2
+
∥∥∥∇2f(x∗)(xk − x∗)−∇f(xk) +∇f(x∗)

∥∥∥2
)

=
2

µ2

(∥∥∥(Hk
µ −∇2f(x∗)

)
(xk − x∗)

∥∥∥2
+
∥∥∥∇f(xk)−∇f(x∗)−∇2f(x∗)(xk − x∗)

∥∥∥2
)

≤ 2

µ2

(∥∥∥Hk
µ −∇2f(x∗)

∥∥∥2
‖xk − x∗‖2 +

L2
∗

4
‖xk − x∗‖4

)
=

2

µ2
‖xk − x∗‖2

(∥∥∥Hk
µ −∇2f(x∗)

∥∥∥2
+
L2
∗

4
‖xk − x∗‖2

)
≤ 2

µ2
‖xk − x∗‖2

(∥∥∥Hk −∇2f(x∗)
∥∥∥2

+
L2
∗

4
‖xk − x∗‖2

)
≤ 2

µ2
‖xk − x∗‖2

(∥∥∥Hk −∇2f(x∗)
∥∥∥2

F
+
L2
∗

4
‖xk − x∗‖2

)
,

where we use Hk
µ � µI in the second inequality, and ∇2f(x∗) � µI in the fourth inequality. From

the convexity of ‖ · ‖2F, we have

‖Hk −∇2f(x∗)‖2F =

∥∥∥∥∥ 1

n

n∑
i=1

(
Hk
i −∇2fi(x

∗)
)∥∥∥∥∥

2

F

≤ 1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖2F = Hk.

Thus,

‖xk+1 − x∗‖2 ≤ 2

µ2
‖xk − x∗‖2Hk +

L2
∗

2µ2
‖xk − x∗‖4. (22)

If Option 2. is used in FedNL, then as Hk + lkI � ∇2f(xk) � µI and ∇f(x∗) = 0, we have

‖xk+1 − x∗‖ = ‖xk − x∗ − [Hk + lkI]−1∇f(xk)‖
≤ ‖[Hk + lkI]−1‖ · ‖(Hk + lkI)(xk − x∗)−∇f(xk) +∇f(x∗)‖

≤ 1

µ
‖(Hk + lkI−∇2f(x∗))(xk − x∗)‖+

1

µ
‖∇f(xk)−∇f(x∗)−∇2f(x∗)(xk − x∗)‖

≤ 1

µ
‖Hk + lkI−∇2f(x∗)‖‖xk − x∗‖+

L∗
2µ
‖xk − x∗‖2

≤ 1

nµ

n∑
i=1

‖Hk
i + lki I−∇2fi(x

∗)‖‖xk − x∗‖+
L∗
2µ
‖xk − x∗‖2

≤ 1

nµ

n∑
i=1

(‖Hk
i −∇2fi(x

∗)‖+ lki)‖xk − x∗‖+
L∗
2µ
‖xk − x∗‖2.

36

From the definition of lki , we have

lki = ‖Hk
i −∇2fi(x

k)‖F ≤ ‖Hk
i −∇2fi(x

∗)‖F + LF‖xk − x∗‖.

Thus,

‖xk+1 − x∗‖ ≤ 2

nµ

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F‖xk − x∗‖+
L∗ + 2LF

2µ
‖xk − x∗‖2.

From Young’s inequality, we further have

‖xk+1 − x∗‖2 ≤ 8

µ2

(
1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F‖xk − x∗‖

)2

+
(L∗ + 2LF)2

2µ2
‖xk − x∗‖4

≤ 8

µ2
‖xk − x∗‖2

(
1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖2F

)
+

(L∗ + 2LF)2

2µ2
‖xk − x∗‖4

=
8

µ2
‖xk − x∗‖2Hk +

(L∗ + 2LF)2

2µ2
‖xk − x∗‖4, (23)

where we use the convexity of ‖ · ‖2F in the second inequality.
Thus, from (22) and (23), we have the following unified bound for both Option 1 and Option 2:

‖xk+1 − x∗‖2 ≤ C

µ2
‖xk − x∗‖2Hk +

D

2µ2
‖xk − x∗‖4. (24)

Assume ‖x0 − x∗‖2 ≤ µ2

2D and Hk ≤ µ2

4C for all k ≥ 0. Then we show that ‖xk − x∗‖2 ≤ µ2

2D for
all k ≥ 0 by induction. Assume ‖xk − x∗‖2 ≤ µ2

2D for all k ≤ K. Then from (24), we have

‖xK+1 − x∗‖2 ≤ 1

4
‖xK − x∗‖2 +

1

4
‖xK − x∗‖2 ≤ µ2

2D
.

Thus we have ‖xk − x∗‖2 ≤ µ2

2D and Hk ≤ µ2

4C for k ≥ 0. Using (24) again, we obtain

‖xk+1 − x∗‖2 ≤ 1

2
‖xk − x∗‖2. (25)

Choosing y = xk and z = x∗ in Lemma C.1, we get

Ek‖Hk
i + αCki (∇2fi(x

k)−Hk
i)−∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
F‖xk − x∗‖2.

Then by Hk+1
i = Hk

i + αCki (∇2fi(x
k)−Hk

i), we have

Ek[Hk+1] ≤ (1−A)Hk +BL2
F‖xk − x∗‖2.

Using the above inequality and (25), for Lyapunov function Φk we deduce

Ek[Φk+1] ≤ (1−A)Hk +BL2
F‖xk − x∗‖2 + 3BL2

F‖xk − x∗‖2

= (1−A)Hk +

(
1− 1

3

)
6BL2

F‖xk − x∗‖2

≤
(

1−min

{
A,

1

3

})
Φk.

37

Hence E[Φk] ≤
(
1−min

{
A, 1

3

})k
Φ0. We further have E[Hk] ≤

(
1−min

{
A, 1

3

})k
Φ0 and

E[‖xk − x∗‖2] ≤ 1
6BL2

F

(
1−min

{
A, 1

3

})k
Φ0 for k ≥ 0. Assume xk 6= x∗ for all k. Then from (24),

we have
‖xk+1 − x∗‖2

‖xk − x∗‖2
≤ C

µ2
Hk +

D

2µ2
‖xk − x∗‖2,

and by taking expectation, we have

E
[
‖xk+1 − x∗‖2

‖xk − x∗‖2

]
≤ C

µ2
E[Hk] +

D

2µ2
E[‖xk − x∗‖2]

≤
(

1−min

{
A,

1

3

})k (
C +

D

12BL2
F

)
Φ0

µ2
.

C.3 Proof of Lemma 3.7

We prove this by induction. Assume ‖Hk
i −∇2fi(x

∗)‖2F ≤
µ2

4C and ‖xk − x∗‖2 ≤ min{ Aµ2

4BCL2
F
, µ

2

2D}

for k ≤ K. Then we also have Hk ≤ µ2

4C for k ≤ K. From (24), we can get

‖xK+1 − x∗‖2 ≤ C

µ2
‖xK − x∗‖2HK +

D

2µ2
‖xK − x∗‖4

≤ 1

4
‖xK − x∗‖2 +

1

4
‖xK − x∗‖2

≤ min

{
Aµ2

4BCL2
F

,
µ2

2D

}
.

From Lemma C.1, by choosing y = xk and z = x∗, for all i ∈ [n], we have

‖HK+1
i −∇2fi(x

∗)‖2F = Ek‖HK
i + αCki (∇2fi(x

K)−HK
i)−∇2fi(x

∗)‖2F
≤ (1−A)‖HK

i −∇2fi(x
∗)‖2F +BL2

F‖xK − x∗‖2

≤ (1−A)
µ2

4C
+BL2

F ·
Aµ2

4BCL2
F

=
µ2

4C
.

C.4 Proof of Lemma 3.8

Notice that Assumption 3.5 implies H0
i = ∇2fi(x

0), from which we have

‖H0
i −∇2fi(x

∗)‖2F =
∑
j,l

|(∇2fi(x
0)−∇2fi(x

∗))jl|2 ≤ d2L2
∞

µ2

D + 4Cd2L2
∞
≤ µ2

4C
,

which implies H0 ≤ µ2

4C . Next we prove ‖xk − x∗‖2 ≤ µ2

D+4Cd2L2
∞

for all k ≥ 0 by induc-

tion. Assume ‖xk − x∗‖2 ≤ µ2

D+4Cd2L2
∞

for k ≤ K. Since (Hk
i)jl is a convex combination of

{(∇2fi(x
0))jl, ..., (∇2fi(x

k))jl} for all i ∈ [n], j, l ∈ [d], from the convexity of | · |2, we have

|(Hk
i −∇2fi(x

∗))jl|2 ≤ L2
∞ ·

µ2

D + 4Cd2L2
∞
≤ µ2

4Cd2
,

38

for k ≤ K. Then we can get ‖Hk
i −∇2fi(x

∗)‖2F ≤
µ2

4C and thus Hk ≤ µ2

4C for k ≤ K. From (24), we
have

‖xK+1 − x∗‖2 ≤ C

µ2
‖xK − x∗‖2HK +

D

2µ2
‖xK − x∗‖4

≤ 1

4
‖xK − x∗‖2 +

1

2
‖xK − x∗‖2

≤ µ2

D + 4Cd2L2
∞
.

D Extension: Partial Participation (FedNL-PP)

Our first extension to the vanilla FedNL is to handle partial participation: a setup when in each
iteration only randomly selected clients participate. This is important when the number n of devices
is very large.

Algorithm 2 FedNL-PP (Federated Newton Learn with Partial Participation)

1: Parameters: Hessian learning rate α > 0; compression operators {Ck1 , . . . , Ckn}; number of
participating devices τ ∈ {1, 2, . . . , n}

2: Initialization: For all i ∈ [n]: w0
i = x0 ∈ Rd; H0

i ∈ Rd×d; l0i = ‖H0
i − ∇2fi(w

0
i)‖F; g0

i =
(H0

i + l0i I)w
0
i −∇fi(w0

i); Moreover: H0 = 1
n

∑n
i=1 H

0
i ; l

0 = 1
n

∑n
i=1 l

0
i ; g

0 = 1
n

∑n
i=1 g

0
i

3: on server
4: xk+1 =

(
Hk + lkI

)−1
gk Main step: Update the global model

5: Choose a subset Sk ⊆ {1, . . . , n} of devices of cardinality τ , uniformly at random
6: Send xk+1 to the selected devices i ∈ Sk Communicate to selected clients

7: for each device i = 1, . . . , n in parallel do
8: for participating devices i ∈ Sk do
9: wk+1

i = xk+1 Update local model

10: Hk+1
i = Hk

i + αCki (∇2fi(w
k+1
i)−Hk

i) Update local Hessian estimate

11: lk+1
i = ‖Hk+1

i −∇2fi(w
k+1
i)‖F Compute local Hessian error

12: gk+1
i = (Hk+1

i + lk+1
i I)wk+1

i −∇fi(wk+1
i) Compute Hessian-corrected local gradient

13: Send Cki (∇2fi(w
k+1
i)−Hk

i), l
k+1
i − lki and gk+1

i − gki to server Communicate to server

14: for non-participating devices i /∈ Sk do
15: wk+1

i = wki , H
k+1
i = Hk

i , l
k+1
i = lki , g

k+1
i = gki Do nothing

16: end for
17: on server
18: gk+1 = gk + 1

n

∑
i∈Sk

(
gk+1
i − gki

)
Maintain the relationship gk = 1

n

∑n
i=1 g

k
i

19: Hk+1 = Hk + α
n

∑
i∈Sk Cki (∇2fi(w

k+1
i)−Hk

i) Update the Hessian estimate on the server

20: lk+1 = lk + 1
n

∑
i∈Sk

(
lk+1
i − lki

)
Maintain the relationship lk = 1

n

∑n
i=1 l

k
i

D.1 Hessian corrected local gradients gki

The key technical novelty in FedNL-PP is the structure of local gradients

gki = (Hk
i + lki I)w

k
i −∇fi(wki)

39

(see line 12 of Algorithm 2). The intuition behind this form is as follows. Because of the partial
participation, some devices might remain inactive for several rounds. As a consequence, each device
i holds a local model wki , which is a stale global model (true global model of the last round client
i participated) when the device is inactive. This breaks the analysis of FedNL and requires an
additional trick to handle stale global models of inactive clients. The trick is to apply some form of
Newton-type step locally and then update the global model at the server in communication efficient
manner. In particular, clients use their corrected learned local Hessian estimates Hk

i + lki I to do
Newton-type step from wki to wki −

[
Hk
i + lki I

]−1∇fi(wki), which can be transformed into(
Hk
i + lki I

)−1 [(
Hk
i + lki I

)
wki −∇fi(wki)

]
=
(
Hk
i + lki I

)−1
gki .

Next, all active clients communicate compressed differences Cki (∇2fi(w
k+1
i) −Hk

i), l
k+1
i − lki and

gk+1
i − gki to the sever, which then updates global estimates gk+1, Hk+1, lk+1 (see lines 18, 19, 20)
and the global model xk+1 (see line 4).

D.2 Importance of compression errors lki

Notice that, unlike FedNL, here we have only one option to update the global model at the sever (this
corresponds to Option 2 of FedNL). Although, it is possible to extend the theory also for Option 1, it
would require strong practical requirements. Indeed, in order to carry out the analysis with Option 1,
either all active clients have to compute projected estimates

[
Hk
i

]−1

µ
or the central server needs to

maintain this for all clients in each iteration. Although implementable, both variants seem to be too
much restrictive from the practical point of view. Compression errors lki mitigate the storage and
computation requirements by the cost of sending an extra float per active client.

D.3 Local convergence theory

We prove three local rates for FedNL-PP: for the squared distance of the global model xk to the
solution ‖xk − x∗‖2, averaged squared distance of stale (due to partial participation) local models
wki to the solution Wk := 1

n

∑n
i=1 ‖wki − x∗‖2, and for the Lyapunov function

Ψk := Hk +BL2
FWk.

Theorem D.1. Let Assumption 3.1 holds and further assume that all loss functions fi are µ-convex.
Suppose ‖x0 − x∗‖2 ≤ µ2

4(L∗+2LF)2
and Hk ≤ µ2

64 for all k ≥ 0. Then, global model xk and all local
models wki of FedNL-PP (Algorithm 2) converge linearly as follows

‖xk+1 − x∗‖2 ≤ Wk, E
[
Wk
]
≤
(

1− 3τ

4n

)k
W0.

Moreover, depending on the choice (5) of compressors Cki and step-size α, we have linear rates

E
[
Ψk
]
≤
(

1− τ

n
min

{
A,

1

2

})k
Ψ0, (26)

E
[
‖xk+1 − x∗‖2

Wk

]
≤
(

1−min

{
A,

1

2

})k ((L∗ + 2LF)2

2BL2
F

+ 8

)
Ψ0

µ2
. (27)

40

Similar to Theorem 3.6, we assumed Hk ≤ µ2

64 holds for all iterates k ≥ 0. Below, we prove that
this inequality holds, using the initial conditions only.

Lemma D.2. Let Assumption 3.4 holds. Assume ‖x0 − x∗‖2 ≤ e3 := min{ Aµ2

16BL2
F
, µ2

4(L∗+2LF)2
} and

‖H0
i −∇2fi(x

∗)‖2F ≤
µ2

64 . Then ‖x
k − x∗‖2 ≤ e3 and ‖Hk

i −∇2fi(x
∗)‖2F ≤

µ2

64 for all k ≥ 1.

Lemma D.3. Let Assumption 3.5 holds and assume ‖x0−x∗‖2 ≤ µ2

(L∗+2LF)2+64d2L2
∞
. Then Hk ≤ µ2

64

for all k ≥ 0.

In the upcoming three subsections we provide the proofs of Theorem D.1, Lemma D.2 and D.3.

D.4 Proof of Theorem D.1

From

xk+1 =
(
Hk + lkI

)−1
gk =

(
Hk + lkI

)−1
[

1

n

n∑
i=1

(Hk
i + lki I)w

k
i −∇fi(wki)

]
,

and

x∗ =
(
Hk + lkI

)−1 [
(Hk + lkI)x∗ −∇f(x∗)

]
=
(
Hk + lkI

)−1
[

1

n

n∑
i=1

(Hk
i + lki I)x

∗ −∇fi(x∗)

]
,

we can obtain

xk+1 − x∗ =
(
Hk + lkI

)−1
[

1

n

n∑
i=1

(Hk
i + lki I)(w

k
i − x∗)− (∇fi(wki)−∇fi(x∗))

]
.

As all functions fi are µ-convex, we get Hk + lkI � 1
n

∑n
i=1∇2fi(w

k
i) � µI. Using the triangle

inequality, we have

‖xk+1 − x∗‖ ≤ 1

µn

n∑
i=1

∥∥∥∇fi(wki)−∇fi(x∗)− (Hk
i + lki I)(w

k
i − x∗)

∥∥∥
≤ 1

µn

n∑
i=1

∥∥∥∇fi(wki)−∇fi(x∗)−∇2fi(x
∗)(wki − x∗)

∥∥∥
+

1

µn

n∑
i=1

∥∥∥(Hk
i + lki I−∇2fi(x

∗)(wki − x∗))
∥∥∥

≤ L∗
2µn

n∑
i=1

‖wki − x∗‖2 +
1

µn

n∑
i=1

‖Hk
i + lki I−∇2fi(x

∗)‖ · ‖wki − x∗‖

≤ L∗
2µ
Wk +

1

µn

n∑
i=1

(
‖Hk

i −∇2fi(x
∗)‖+ lki

)
· ‖wki − x∗‖.

Recall that

lki = ‖Hk
i −∇2fi(w

k
i)‖F

≤ ‖Hk
i −∇2fi(x

∗)‖F + ‖∇2fi(x
∗)−∇2fi(w

k
i)‖F

≤ ‖Hk
i −∇2fi(x

∗)‖F + LF‖wki − x∗‖.

41

Then we arrive at

‖xk+1 − x∗‖

≤ L∗
2µ
Wk +

1

µn

n∑
i=1

(
‖Hk

i −∇2fi(x
∗)‖+ ‖Hk

i −∇2fi(x
∗)‖F + LF‖wki − x∗‖

)
· ‖wki − x∗‖

≤ L∗ + 2LF

2µ
Wk +

2

µn

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F · ‖wki − x∗‖.

We further use Young’s inequality to bound ‖xk+1 − x∗‖2 as

‖xk+1 − x∗‖2 ≤ (L∗ + 2LF)2

2µ2
(Wk)2 +

8

µ2n2

(
n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F · ‖wki − x∗‖

)2

≤ (L∗ + 2LF)2

2µ2
(Wk)2 +

8

µ2

(
1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖2F

)
Wk

=
(L∗ + 2LF)2

2µ2
(Wk)2 +

8

µ2
HkWk, (28)

where we use Cauchy-Schwarz inequality in the second inequality and use Hk = 1
n

∑n
i=1 ‖Hk

i −
∇2fi(x

∗)‖2F in the last equality. From the update rule of wki , we have

Ek[Wk+1] =
τ

n
Ek
[
‖xk+1 − x∗‖2

]
+
(

1− τ

n

)
Wk

≤ τ

n
Wk

(
(L∗ + 2LF)2

2µ2
Wk +

8

µ2
Hk
)

+
(

1− τ

n

)
Wk. (29)

From the assumptions we have ‖w0
i − x∗‖2 = ‖x0− x∗‖2 ≤ µ2

4(L∗+2LF)2
and Hk ≤ µ2

64 for all k ≥ 0.

Next we show that ‖xk − x∗‖2 ≤ µ2

4(L∗+2LF)2
for all k ≥ 1 by mathematical induction. First, we have

W0 ≤ µ2

4(L∗+2LF)2
. Then from (28) we have

‖x1 − x∗‖2 ≤ (L∗ + 2LF)2

2µ2
(W0)2 +

8

µ2
H0W0

≤ 1

8
W0 +

1

8
W0

≤ µ2

4(L∗ + 2LF)2
.

Assume ‖xk − x∗‖2 ≤ µ2

4(L∗+2LF)2
for k ≤ K. Then Wk ≤ min{ µ2

(L∗+2LF)2
,M} for k ≤ K, and

from (28) and the assumption that Hk ≤ µ2

64 for k ≥ 0, we have

‖xK+1 − x∗‖2 ≤ (L∗ + 2LF)2

2µ2
(WK)2 +

8

µ2
HKWK

≤ 1

8
WK +

1

8
WK

≤ µ2

4(L∗ + 2LF)2
.

42

This indicates that (L∗+2LF)2

2µ2
Wk + 8

µ2
Hk ≤ 1

4 for all k ≥ 0. Then from (29), we can obtain

Ek[Wk+1] ≤
(

1− 3τ

4n

)
Wk. (30)

By applying the tower property, we have E[Wk+1] ≤
(
1− 3τ

4n

)
E[Wk]. Unrolling the recursion, we

can get E[Wk] ≤
(
1− 3τ

4n

)kW0. Since at each step, each worker makes update with probability τ
n ,

we have

Ek‖Hk+1
i −∇2fi(x

∗)‖2F
=

(
1− τ

n

)
Ek
[
‖Hk+1

i −∇2fi(x
∗)‖2F|i /∈ Sk

]
+
τ

n
Ek
[
‖Hk+1

i −∇2fi(x
∗)‖2F|i ∈ Sk

]
=

(
1− τ

n

)
‖Hk

i −∇2fi(x
∗)‖2F +

τ

n
Ek‖Hk

i + αCki (∇2fi(x
k+1)−Hk

i)−∇2fi(x
∗)‖2F.

Then since Ek[xk+1] = xk+1 and Ek[x∗] = x∗, by choosing z = x∗ and y = xk+1 in Lemma C.1,
we have

Ek‖Hk+1
i −∇2fi(x

∗)‖2F
≤

(
1− τ

n

)
‖Hk

i −∇2fi(x
∗)‖2F +

τ

n
(1−A)‖Hk

i −∇2fi(x
∗)‖2F +

τ

n
BL2

F‖xk+1 − x∗‖2

=

(
1− Aτ

n

)
‖Hk

i −∇2fi(x
∗)‖2F +

τBL2
F

n
‖xk+1 − x∗‖2.

Summing up the above inequality from i = 1 to n and multiplying 1
n , we can obtain

Ek[Hk+1] ≤
(

1− Aτ

n

)
Hk +

τBL2
F

n
Ek‖xk+1 − x∗‖2.

Recall that (L∗+2LF)2

2µ2
Wk + 8

µ2
Hk ≤ 1

4 for all k ≥ 0, from (28), we have

‖xk+1 − x∗‖2 ≤ 1

4
Wk,

which implies that

Ek[Hk+1] ≤
(

1− Aτ

n

)
Hk +

τBL2
F

4n
Wk. (31)

Then from (30) and (31), we have the following recurrence relation for the Lyapunov function Ψ:

Ek[Ψk+1] = Ek[Hk+1] +BL2
FEk[Wk+1]

≤
(

1− Aτ

n

)
Hk +

τBL2
F

4n
Wk +

(
1− 3τ

4n

)
BL2

FWk

=

(
1− Aτ

n

)
Hk +

(
1− τ

2n

)
BL2

FWk

≤
(

1− τ

n
min

{
A,

1

2

})
Ψk.

43

By applying the tower property, we have E[Ψk+1] ≤
(
1− τ

n min
{
A, 1

2

})
E[Ψk]. Unrolling the re-

cursion, we can obtain E[Ψk] ≤
(
1− τ

n min
{
A, 1

2

})k
Ψ0. We further have E[Hk] ≤

(
1− τ

n min
{
A, 1

2

})k
Ψ0

and E[Wk] ≤ 1
BL2

F

(
1− τ

n min
{
A, 1

2

})k
Ψ0, which applied on (28) gives

E
[
‖xk+1 − x∗‖2

Wk

]
≤ (L∗ + 2LF)2

2µ2
E[Wk] +

8

µ2
E[Hk]

≤
(

1− τ

n
min

{
A,

1

2

})k ((L∗ + 2LF)2

2BL2
F

+ 8

)
Ψ0

µ2
.

D.5 Proof of Lemma D.2

First, we have W0 ≤ min{ Aµ2

16BL2
F
, µ2

4(L∗+2LF)2
} and H0 ≤ µ2

64 . Then from (28) we can get

‖x1 − x∗‖2 ≤ 1

4
W0.

For each i, either H1
i = H0

i , or by Lemma C.1

‖H1
i −∇2fi(x

∗)‖2F = ‖H0
i + αC0

i (∇2fi(x
1)−H0

i)−∇2fi(x
∗)‖2F

≤ (1−A)‖H0
i −∇2fi(x

∗)‖2F +BL2
F‖x1 − x∗‖2

≤ (1−A)‖H0
i −∇2fi(x

∗)‖2F +A · 1

4A
BL2

FW0

≤ (1−A)
µ2

64
+A · µ

2

64

≤ µ2

64
.

We assume ‖Hk
i − ∇2fi(x

∗)‖2F ≤
µ2

64 and ‖xk − x∗‖2 ≤ min{ Aµ2

16BL2
F
, µ2

4(L∗+2LF)2
} for all k ≤ K.

Then we have Hk ≤ µ2

64 and Wk ≤ min{ Aµ2

16BL2
F
, µ2

4(L∗+2LF)2
} for all k ≤ K. Then from (28) we can

get

‖xK+1 − x∗‖2 ≤ 1

4
Wk ≤ min{ Aµ2

16BL2
F

,
µ2

4(L∗ + 2LF)2
}.

For each i, either HK+1
i = HK

i , or by Lemma C.1

‖HK+1
i −∇2fi(x

∗)‖2F = ‖HK
i + αCKi (∇2fi(x

K+1)−HK
i)−∇2fi(x

∗)‖2F
≤ (1−A)‖HK

i −∇2fi(x
∗)‖2F +BL2

F‖xK+1 − x∗‖2

≤ (1−A)‖HK
i −∇2fi(x

∗)‖2F +A · 1

4A
BL2

FWK

≤ (1−A)
µ2

64
+A · µ

2

64

≤ µ2

64
.

44

D.6 Proof of Lemma D.3

First, since H0
i = ∇2fi(w

0
i), we have

‖H0
i −∇2fi(x

∗)‖2F =
∑
j,l

|(∇2fi(w
0
i)−∇2fi(x

∗))jl|2 ≤ d2L2
∞

µ2

(H + 2LF)2 + 64d2L2
∞
≤ µ2

64
,

which implies H0 ≤ µ2

64 . Then from (28), we have

‖x1 − x∗‖2 ≤ W0 ≤ µ2

(L∗ + 2LF)2 + 64d2L2
∞
.

Next we prove ‖xk − x∗‖2 ≤ µ2

(L∗+2LF)2+64d2L2
∞

for all k ≥ 1 by induction.

Assume ‖xk − x∗‖2 ≤ µ2

(L∗+2LF)2+64d2L2
∞

for k ≤ K. Then since (Hk
i)jl is a convex combination of

{(∇2fi(w
0
i))jl, (∇2fi(x

1))jl, ..., (∇2fi(x
k))jl}, from the convexity of | · |2, we have

|(Hk
i −∇2fi(x

∗))jl|2 ≤ L2
∞ ·

µ2

(L∗ + 2LF)2 + 64d2L2
∞
≤ µ2

64d2
,

for k ≤ K. Therefore, ‖Hk
i − ∇2fi(x

∗)‖2F ≤
µ2

64 and Hk ≤ µ2

64 for k ≤ K. Furthermore, from
Wk ≤ µ2

(L∗+2LF)2+64d2L2
∞

for all k ≤ K and (28), we can also obtain

‖xK+1 − x∗‖2 ≤ WK ≤ µ2

(L∗ + 2LF)2 + 64d2L2
∞
.

E Extension: Globalization via Line Search (FedNL-LS)

Next two extensions of FedNL is to incorporate globalization strategy. Our first globalization
technique is based on backtracking line search described in FedNL-LS below.

Algorithm 3 FedNL-LS (Federated Newton Learn with Line Search)

1: Parameters: Hessian learning rate α ≥ 0; compression operators {Ck1 , . . . , Ckn}; line search
parameters c ∈ (0, 1/2] and γ ∈ (0, 1)

2: Initialization: x0 ∈ Rd; H0
1, . . . ,H

0
n ∈ Rd×d and H0 := 1

n

∑n
i=1 H

0
i

3: for each device i = 1, . . . , n in parallel do
4: Get xk from the server; compute fi(xk), ∇fi(xk) and ∇2fi(x

k)
5: Send fi(xk), ∇fi(xk) and Ski := Cki (∇2fi(x

k)−Hk
i) to the server

6: Update local Hessian shifts Hk+1
i = Hk

i + αSki
7: end for
8: on server
9: Get fi(xk), ∇fi(xk) and Ski from all devices i ∈ [n]

10: f(xk) = 1
n

∑n
i=1 fi(x

k), ∇f(xk) = 1
n

∑n
i=1∇fi(xk), Sk = 1

n

∑n
i=1 S

k
i

11: Compute search direction dk = −
[
Hk
]−1

µ
∇f(xk)

12: Find the smallest integer s ≥ 0 satisfying f(xk + γsdk) ≤ f(xk) + cγs
〈
∇f(xk), dk

〉
13: Update global model to xk+1 = xk + γsdk

14: Update global Hessian shift to Hk+1 = Hk + αSk

45

E.1 Line search procedure

In contrast to the vanilla FedNL, here we do not follow the direction dk = −
[
Hk
]−1

µ
∇f(xk) with

unit step size. Instead, FedNL-LS aims to select some step size which would guarantee sufficient
decrease in the empirical loss. Thus, we fix the direction dk (see line 11 of Algorihtm 3) of next
iterate xk+1, but want to adjust the step size along that direction. With parameters c ∈ (0, 1/2] and
γ ∈ (0, 1), we choose the largest step size of the form γs, which leads to a sufficient decrease in the loss
f(xk+γsdk) ≤ f(xk)+cγs

〈
∇f(xk), dk

〉
(see line 12). Note that this procedure requires computation

of local functions fi for all devices i ∈ [n] in order to do the step in line 12. One the other hand,
communication cost of line search procedure is extremely cheap compared to communication cost of
gradients and Hessians.

E.2 Local convergence theory

We provide global linear convergence analysis for FedNL-LS. Despite the fact that theoretical rate is
slower than the rate of GD, it shows excellent results in experiments. By L-smoothness we assume
Lipschitz continuity of gradients with Lipschitz constant L.

Theorem E.1. Let Assumption 3.1 hold, function f be L-smooth and assume L̃ := supk≥0 ‖Hk‖ is
finite. Then convergence of FedNL-LS is linear with the following rate

f(xk+1)− f(x∗) ≤
(

1− µ

L
min

{
µ

L̃
, 1

})k (
f(x0)− f(x∗)

)
(32)

Next, we provide upper bounds for L̃, which was assumed to be finite in Theorem E.1.

Lemma E.2. If Assumption 3.4 holds, then L̃ ≤ ‖∇2f(x∗)‖ + ‖H0
i − ∇2fi(x

∗)‖F +
√

B
ALFR. If

Assumption 3.5 holds, then L̃ ≤ dL∞R+ ‖∇2f(x∗)‖.

E.3 Proof of Theorem E.1

Denote κ := L
µ . Using L-smoothness of f we get

f

(
xk +

1

κ
dk
)
≤ f(xk) +

1

κ
〈∇f(xk), dk〉+

L

2κ2

∥∥∥dk∥∥∥2

= f(xk)− 1

κ
〈∇f(xk),

[
Hk
µ

]−1
∇f(xk)〉+

L

2κ2

∥∥∥∥[Hk
µ

]−1
∇f(xk)

∥∥∥∥2

≤ f(xk)− 1

κ
〈∇f(xk),

[
Hk
µ

]−1
∇f(xk)〉+

L

2µκ2
〈∇f(xk),

[
Hk
µ

]−1
∇f(xk)〉

= f(xk)− 1

2κ
〈∇f(xk),

[
Hk
µ

]−1
∇f(xk)〉.

From this we conclude that, if c = γ = 1
2 , then line search procedure needs at most s ≤ log2 κ steps.

To continue the above chain of derivations, we need to upper bound shifts Hk
µ in spectral norm.

Notice that if Hk has at least on eigenvalue larger than µ, then clearly ‖Hk
µ‖ = ‖Hk‖. Otherwise,

if all eigenvalues do not exceed µ, then projection gives Hk
µ = µI. Thus, in both cases we can state

46

that ‖Hk
µ‖ ≤ max{‖Hk‖, µ} ≤ max{L̃, µ}. Hence

f

(
xk +

1

κ
dk
)
≤ f(xk)− 1

2κ
〈∇f(xk),

[
Hk
µ

]−1
∇f(xk)〉

≤ f(xk)− 1

2κ

1

max{L̃, µ}
‖∇f(xk)‖2

= f(xk)− 1

2κ

1

max{L̃, µ}
‖∇f(xk)−∇f(x∗)‖2

≤ f(xk)− 1

κ

µ

max{L̃, µ}

(
f(xk)− f(x∗)

)
.

Taking xk+1 = xk + 1
κd

k, subtracting both sides by f(x∗) and unraveling the above recurrence, we
get (32).

E.4 Proof of Lemma E.2

Recall that R = sup{‖x−x∗‖ : f(x) ≤ f(x0)}. It follows from the line search procedure that function
values are non-increasing, namely f(xk+1) ≤ f(xk) ≤ f(x0). Hence ‖xk − x∗‖ ≤ R for all k ≥ 0.
Denote

l̃k :=
1

n

n∑
i=1

l̃ki , l̃ki := ‖Hk
i −∇2fi(x

∗)‖F.

Consider the case when compressors Cki ∈ C(δ) and the learning rate is either α = 1−
√

1− δ or
α = 1. Using Lemma C.1 with y = xk and z = x∗, for both cases we get

‖Hk+1
i −∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
F‖xk − x∗‖2. (33)

Reusing (33) multiple times we get

‖Hk+1
i −∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
FR

2

≤ (1−A)2‖Hk−1
i −∇2fi(x

∗)‖2F + [1 + (1−A)]BL2
FR

2

≤ (1−A)k+1‖H0
i −∇2fi(x

∗)‖2F +BL2
FR

2
∞∑
t=0

(1−A)t

≤ ‖H0
i −∇2fi(x

∗)‖2F +
B

A
L2

FR
2,

which implies boundedness of l̃k:

l̃k =
1

n

n∑
i=1

l̃ki ≤
1

n

n∑
i=1

√
‖H0

i −∇2fi(x∗)‖2F +
B

A
L2

FR
2 ≤ ‖H0

i −∇2fi(x
∗)‖F +

√
B

A
LFR.

47

From this we also conclude boundedness of L̃ as follows

‖Hk‖ ≤ ‖Hk −∇2f(x∗)‖+ ‖∇2f(x∗)‖

≤

∥∥∥∥∥ 1

n

n∑
i=1

(Hk
i −∇2fi(x

∗))

∥∥∥∥∥
F

+ ‖∇2f(x∗)‖

≤ 1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F + ‖∇2f(x∗)‖

≤ ‖∇2f(x∗)‖+ ‖H0
i −∇2fi(x

∗)‖F +

√
B

A
LFR.

Consider the case when compressors Cki ∈ B(ω) and the learning rate α ≤ 1
ω+1 . As we additionally

assume that (Hk
i)jl is a convex combination of past Hessians {(∇2fi(x

0))jl, . . . , (∇2fi(x
k))jl}, we

get
|(Hk

i −∇2fi(x
∗))jl|2 ≤ L2

∞ max
0≤t≤k

‖xt − x∗‖2 ≤ L2
∞R

2.

Therefore
‖Hk

i −∇2fi(x
∗)‖2F ≤ d2L2

∞R
2,

from which

‖Hk‖ ≤ 1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F + ‖∇2f(x∗)‖ ≤ dL∞R+ ‖∇2f(x∗)‖.

F Extension: Globalization via Cubic Regularization (FedNL-CR)

Our next extension to FedNL providing global convergence guarantees is cubic regularization.

Algorithm 4 FedNL-CR (Federated Newton Learn with Cubic Regularization)

1: Parameters: Hessian learning rate α ≥ 0; compression operators {Ck1 , . . . , Ckn}; Lipschitz
constant H ≥ 0 for Hessians

2: Initialization: x0 ∈ Rd; H0
1, . . . ,H

0
n ∈ Rd×d and H0 := 1

n

∑n
i=1 H

0
i

3: for each device i = 1, . . . , n in parallel do
4: Get xk from the server and compute local gradient ∇fi(xk) and local Hessian ∇2fi(x

k)
5: Send ∇fi(xk), Ski := Cki (∇2fi(x

k)−Hk
i) and lki := ‖Hk

i −∇2fi(x
k)‖F to the server

6: Update local Hessian shift to Hk+1
i = Hk

i + αSki
7: end for
8: on server
9: Get ∇fi(xk), Ski and lki from all devices i ∈ [n]

10: ∇f(xk) = 1
n

∑n
i=1∇fi(xk), Sk = 1

n

∑n
i=1 S

k
i , lk = 1

n

∑n
i=1 l

k
i

11: hk = arg minh∈Rd Tk(h), where Tk(h) :=
〈
∇f(xk), h

〉
+ 1

2

〈
(Hk + lkI)h, h

〉
+ L∗

6 ‖h‖
3

12: Update global model to xk+1 = xk + hk

13: Update global Hessian shift to Hk+1 = Hk + αSk

48

F.1 Cubic regularization

Adding third order regularization term L∗
6 ‖h‖

3 is a well known technique to guarantee global
convergence for Newton-type methods. Basically, this term provides means to upper bound the
loss function globally, which ultimately leads to global convergence. Notice that, without this term
FedNL-CR reduces to FedNL with Option 2. However, cubic regularization alone does not provide us
global upper bounds as the second order information, the Hessians, are compressed, and thus upper
bounds might be violated.

F.2 Solving the subproblem

In each iteration, the sever needs to solve the subproblem in line 11 in order to compute hk. Although
it does not admit a closed form solution, the server can solve it by reducing to certain one-dimensional
nonlinear equation. For more details, see section C.1 of [Islamov et al., 2021].

F.3 Importance of compression errors lki

Unlike FedNL and FedNL-PP, compression errors are the only option for FedNL-CR to update the
global model. The reason is that to get a cubic upper bound for f we need to upper bound current true
Hessians ∇2fi(x

k) in the matrix order. Neither current learned Hessian Hk
i nor the projected matrix[

Hk
i

]
µ
does not guarantee upper bound for ∇2fi(x

k). Meanwhile, from lki := ‖Hk
i −∇2fi(x

k)‖F, we
have ∇2fi(x

k) � Hk
i + lki I.

F.4 Global and local convergence theory

We prove two global rates (covering convex and strongly convex cases) and the same three local
rates of FedNL.

Theorem F.1. Let Assumption 3.1 hold and assume l := supk≥0 l
k is finite. Then if f(x) is convex

(i.e., µ = 0), we have global sublinear rate

f(xk)− f(x∗) ≤ 9lR2

k
+

9L∗R
3

k2
+

3
(
f(x0)− f(x∗)

)
k3

, (34)

where R := {‖x− x∗‖ : f(x) ≤ f(x0)}. Moreover, if f(x) is µ-convex with µ > 0, then convergence
becomes linear with respect to function sub-optimality, i.e., f(xk)− f(x∗) ≤ ε is guaranteed after

O

((
l

µ
+

√
L∗R

µ
+ 1

)
log

f(x0)− f(x∗)

ε

)
(35)

iterations. Furthermore, if ‖x0 − x∗‖2 ≤ µ2

20(L2
∗+8L2

F)
and Hk ≤ µ2

160 for all k ≥ 0, then we have the
same local rates (7), (8) and (9).

Next, we provide upper bounds for l, which was assumed to be finite in the theorem.

Lemma F.2. If Assumption 3.4 holds, then l ≤
√
H0 +

(
1 +

√
B
A

)
LFR. If Assumption 3.5 holds,

then l ≤ (dL∞ + LF)R.

49

F.5 Proof of Theorem F.1

Global rate for general convex case (µ = 0). First, from L∗-Lipschitzness of the Hessian of f
we get

f(xk+1) ≤ f(xk) +
〈
∇f(xk), hk

〉
+

1

2

〈
∇2f(xk)hk, hk

〉
+
L∗
6
‖hk‖3

≤ f(xk) +
〈
∇f(xk), hk

〉
+

1

2

〈
(Hk + lkI)hk, hk

〉
+
L∗
6
‖hk‖3

= f(xk) + min
h∈Rd

Tk(h) (36)

≤ f(xk) + Tk(y − xk)

≤ f(xk) +
〈
∇f(xk), y − xk

〉
+

1

2

〈
(Hk + lkI)(y − xk), y − xk

〉
+
L∗
6
‖y − xk‖3

≤ f(xk) +
〈
∇f(xk), y − xk

〉
+

1

2

〈
∇2f(xk)(y − xk), y − xk

〉
+
L∗
6
‖y − xk‖3

+
1

2

∥∥∥Hk −∇2f(xk)
∥∥∥ ‖y − xk‖2 +

1

2
lk‖y − xk‖2

≤ f(xk) +
〈
∇f(xk), y − xk

〉
+

1

2

〈
∇2f(xk)(y − xk), y − xk

〉
+ lk‖y − xk‖2 +

L∗
6
‖y − xk‖3

≤ f(y) +
L∗
6
‖y − xk‖3 + lk‖y − xk‖2 +

L∗
6
‖y − xk‖3

≤ f(y) + l‖y − xk‖2 +
L∗
3
‖y − xk‖3. (37)

Denote ak := k2 and

Ak := 1 +

k∑
i=1

ai = 1 +

k∑
i=1

i2 = 1 +
k(k + 1)(2k + 1)

6
≥ 1 +

k3

3
.

Let σk =
ak+1

Ak+1
∈ (0, 1). Then we get 1 − σk = Ak

Ak+1
. Now we choose y = σkx

∗ + (1 − σk)xk =

xk + σk(x
∗ − xk). Using convexity of f , we get

f(xk+1) ≤ f(y) + l‖y − xk‖2 +
L∗
3
‖y − xk‖3

≤ σkf(x∗) + (1− σk)f(xk) + lσ2
k‖xk − x∗‖2 +

L∗
3
σ3
k‖xk − x∗‖3 (38)

≤ σkf(x∗) + (1− σk)f(xk) + lσ2
kR

2 +
L∗
3
σ3
kR

3.

Using the definition of σk and subtracting both sides by Akf(x∗) we get

Ak+1

(
f(xk+1)− f(x∗)

)
≤ Ak

(
f(xk)− f(x∗)

)
+ lR2 a

2
k+1

Ak+1
+
L∗R

3

3

a3
k+1

A2
k+1

,

repeated application of which provides us the following bound

Ak

(
f(xk)− f(x∗)

)
≤ A0

(
f(x0)− f(x∗)

)
+ lR2

k∑
t=1

a2
t

At
+
L∗R

3

3

k∑
t=0

a3
t

A2
t

. (39)

50

Next we upper bound the above two sums:

k∑
t=1

a2
t

At
≤

k∑
t=1

t4

1 + t3

3

≤ 3k2,

k∑
t=1

a3
t

A2
t

≤
k∑
t=1

t6(
1 + t3

3

)2 ≤ 9k.

Hence the bound (39) can be transformed into

f(xk)− f(x∗) ≤ 1

Ak

[(
f(x0)− f(x∗)

)
+ 3k2 · lR2 + 3k · L∗R3

]
≤ 9lR2

k
+

9L∗R
3

k2
+

3
(
f(x0)− f(x∗)

)
k3

.

Thus, we have shown O(1
k) rate for convex functions and it holds for any k ≥ 1.

Global rate for strongly convex case (µ > 0). We can turn this rate into a linear rate using
strong convexity of f . Namely, in this case we have R2 ≤ 2

µ(f(x0)− f(x∗)) and therefore

f(xk)− f(x∗) ≤
[

18l

kµ
+

18L∗R

k2µ
+

3

k3

] (
f(x0)− f(x∗)

)
≤ 1

2

(
f(x0)− f(x∗)

)
,

if k ≥ K1 := max
(

108l
µ ,
√

108L∗R
µ , 3

)
. In other words, we half the error f(xk)− f(x∗) after K1 steps.

This implies the following linear rate

O

((
l

µ
+

√
L∗R

µ
+ 1

)
log

1

ε

)
.

Local rate for strongly convex case (µ > 0).
From the definition of hk direction, we have

∇Tk(hk) = ∇f(xk) + (Hk + lkI)hk +
L∗
2
‖hk‖hk = 0,

which implies the following equivalent update rule

xk+1 = xk + hk

= xk −
[
Hk + lkI +

L∗
2
‖xk+1 − xk‖

]−1

∇f(xk).

51

Then, using µI � ∇f(xk) � Hk + lkI, we have

‖xk+1 − x∗‖2

=

∥∥∥∥∥xk − x∗ −
[
Hk + lkI +

L∗
2
‖xk+1 − xk‖

]−1

∇f(xk)

∥∥∥∥∥
2

≤ 1

µ2

∥∥∥∥[Hk + lkI +
L∗
2
‖xk+1 − x∗‖+

L∗
2
‖xk − x∗‖

]
(xk − x∗)−∇f(xk)

∥∥∥∥2

≤ 5

µ2

(∥∥∥∇2f(xk)(xk − x∗)−∇f(xk) +∇f(x∗)
∥∥∥2

+
L2
∗

4
‖xk − x∗‖4 +

L2
∗

4
‖xk+1 − x∗‖2‖xk − x∗‖2

+
∥∥∥(Hk −∇2f(xk)

)
(xk − x∗)

∥∥∥2
+
[
lk
]2
‖xk − x∗‖2

)
≤ 5

µ2

(
L2
∗

4
‖xk − x∗‖4 +

L2
∗

4
‖xk − x∗‖4 +

L2
∗

4
‖xk+1 − x∗‖2‖xk − x∗‖2

+
∥∥∥Hk −∇2f(xk)

∥∥∥2
‖xk − x∗‖2 +

1

n

n∑
i=1

∥∥∥Hk
i −∇fi(xk)

∥∥∥2

F
‖xk − x∗‖2

)

≤ 5

µ2

(
L2
∗

2
‖xk − x∗‖4 +

L2
∗

4
‖xk+1 − x∗‖2‖xk − x∗‖2 +

2

n

n∑
i=1

∥∥∥Hk
i −∇fi(xk)

∥∥∥2

F
‖xk − x∗‖2

)

≤ 5L2
∗

2µ2
‖xk − x∗‖4 +

5L2
∗

4µ2
‖xk+1 − x∗‖2‖xk − x∗‖2 +

20

nµ2

n∑
i=1

∥∥∥Hk
i −∇fi(x∗)

∥∥∥2

F
‖xk − x∗‖2

+
20

nµ2

n∑
i=1

∥∥∥∇fi(xk)−∇fi(x∗)∥∥∥2

F
‖xk − x∗‖2

≤ 5L2
∗

2µ2
‖xk − x∗‖4 +

5L2
∗

4µ2
‖xk+1 − x∗‖2‖xk − x∗‖2 +

20

µ2
‖xk − x∗‖2Hk +

20L2
F

µ2
‖xk − x∗‖4

≤ 5L2
∗

4µ2
‖xk+1 − x∗‖2‖xk − x∗‖2 +

20

µ2
‖xk − x∗‖2Hk +

5(L2
∗ + 8L2

F)

2µ2
‖xk − x∗‖4. (40)

Using the assumptions we show that ‖xk − x∗‖2 ≤ µ2

20(L2
∗+8L2

F)
for all k ≥ 0. We prove this again

by induction on k. From ‖xk − x∗‖2 ≤ µ2

20(L2
∗+8L2

F)
≤ 2µ2

5L2
∗
and Hk ≤ µ2

160 , it follows

‖xk+1 − x∗‖2

≤ 5L2
∗

4µ2
‖xk − x∗‖2‖xk+1 − x∗‖2 +

20

µ2
Hk‖xk − x∗‖2 +

5(L2
∗ + 8L2

F)

2µ2
‖xk − x∗‖2‖xk − x∗‖2

≤ 1

2
‖xk+1 − x∗‖2 +

1

8
‖xk − x∗‖2 +

1

8
‖xk − x∗‖2

≤ 1

2
‖xk+1 − x∗‖2 +

1

4
‖xk − x∗‖2.

Hence

‖xk+1 − x∗‖2 ≤ 1

2
‖xk − x∗‖2 ≤ µ2

20(L2
∗ + 8L2

F)
. (41)

52

By this we complete the induction and also derived the local linear rate for iterates. Moreover, (40)
and (41) imply

‖xk+1 − x∗‖2 ≤ 20

µ2
‖xk − x∗‖2Hk +

3L2
∗ + 20L2

F

µ2
‖xk − x∗‖4. (42)

Choosing y = xk and z = x∗ in Lemma C.1, and noting that Hk+1
i = Hk

i + αCki (∇2fi(x
k)−Hk

i),
we get

Ek
[
Hk+1

]
≤ (1−A)Hk +BL2

F‖xk − x∗‖2.

Using the same Lyapunov function Φk = Hk + 6BL2
F‖xk − x∗‖2, from the above inequality and

(41), we arrive at

Ek
[
Φk+1

]
≤ (1−A)Hk +BL2

F‖xk − x∗‖2 + 3BL2
F‖xk − x∗‖2

= (1−A)Hk +

(
1− 1

3

)
6BL2

F‖xk − x∗‖2

≤
(

1−min

{
A,

1

3

})
Φk.

Hence E[Φk] ≤
(
1−min

{
A, 1

3

})k
Φ0. We further have E[Hk] ≤

(
1−min

{
A, 1

3

})k
Φ0 and

E[‖xk − x∗‖2] ≤ 1
6BL2

F

(
1−min

{
A, 1

3

})k
Φ0 for k ≥ 0. Assume xk 6= x∗ for all k. Then from (42),

we have
‖xk+1 − x∗‖2

‖xk − x∗‖2
≤ 20

µ2
Hk +

3L2
∗ + 20L2

F

µ2
‖xk − x∗‖2,

and by taking expectation, we have

E
[
‖xk+1 − x∗‖2

‖xk − x∗‖2

]
≤ 20

µ2
E[Hk] +

3L2
∗ + 20L2

F

µ2
E[‖xk − x∗‖2]

≤
(

1−min

{
A,

1

3

})k (
20 +

3L2
∗ + 20L2

F

6BL2
F

)
Φ0

µ2
.

To conclude, FedNL-CR method provably provides global rates (both for convex and strongly
convex cases) and recovers the same local rates (7), (8) and (9) that we showed for FedNL. Note
that constants A and B are the same, while C and D differ from (9).

F.6 Proof of Lemma F.2

Recall that R = sup{‖x − x∗‖ : f(x) ≤ f(x0)}. Since Tk(0) = 0, from (36) we can show that
f(xk+1) ≤ f(xk) ≤ f(x0), and hence ‖xk − x∗‖ ≤ R for all k ≥ 0. Denote

l̃k :=
1

n

n∑
i=1

l̃ki , l̃ki := ‖Hk
i −∇2fi(x

∗)‖F.

Notice that

lki = ‖∇2fi(x
k)−Hk

i ‖F
≤ ‖Hk

i −∇2fi(x
∗)‖F + ‖∇2fi(x

k)−∇2fi(x
∗)‖F

≤ l̃ki + LF‖xk − x∗‖
≤ l̃ki + LFR. (43)

53

Consider the case when compressors Cki ∈ C(δ) and the learning rate is either α = 1 −
√

1− δ or
α = 1. Using Lemma C.1 with y = xk and z = x∗, for both cases we get

‖Hk+1
i −∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
F‖xk − x∗‖2. (44)

Reusing (44) multiple times we get

‖Hk+1
i −∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
FR

2

≤ (1−A)2‖Hk−1
i −∇2fi(x

∗)‖2F + [1 + (1−A)]BL2
FR

2

≤ (1−A)k+1‖H0
i −∇2fi(x

∗)‖2F +BL2
FR

2
∞∑
t=0

(1−A)t

≤ ‖H0
i −∇2fi(x

∗)‖2F +
B

A
L2

FR
2,

which implies boundedness of l̃ki :

l̃ki ≤
√
‖H0

i −∇2fi(x∗)‖2F +
B

A
L2

FR
2 ≤ l̃0i +

√
B

A
LFR.

From this we also conclude boundedness of lk as follows

lk =
1

n

n∑
i=1

lki
(43)
≤ 1

n

n∑
i=1

l̃ki + LFR ≤ l̃0 +

(
1 +

√
B

A

)
LFR.

We can further upper bound l̃0 ≤
√
H0 and conclude l ≤

√
H0 +

(
1 +

√
B
A

)
LFR.

Consider the case when compressors Cki ∈ B(ω) and the learning rate α ≤ 1
ω+1 . As we additionally

assume that (Hk
i)jl is a convex combination of past Hessians {(∇2fi(x

0))jl, . . . , (∇2fi(x
k))jl}, we

get
|(Hk

i −∇2fi(x
∗))jl|2 ≤ L2

∞ max
0≤t≤k

‖xt − x∗‖2 ≤ L2
∞R

2.

Therefore [
l̃ki

]2
= ‖Hk

i −∇2fi(x
∗)‖2F ≤ d2L2

∞R
2,

from which

lk =
1

n

n∑
i=1

lki
(43)
≤ 1

n

n∑
i=1

l̃ki + LFR ≤ dL∞R+ LFR = (dL∞ + LF)R.

G Extension: Bidirectional Compression (FedNL-BC)

Finally, we extend the vanilla FedNL to allow for an even more severe level of compression that can’t
be attained by compressing the Hessians only. This is achieved by compressing the gradients (uplink)
and the model (downlink), in a “smart” way. Thus, in FedNL-BC (Algorithm 5) described below,
both directions of communication are fully compressed.

54

Algorithm 5 FedNL-BC (Federated Newton Learn with Bidirectional Compression)
1: Parameters: Hessian learning rate α ≥ 0; model learning rate η ≥ 0; gradient compression

probability p ∈ (0, 1]; compression operators {Ck1 , . . . , Ckn} and CkM
2: Initialization: x0 = w0 = z0 ∈ Rd; H0

1, . . . ,H
0
n ∈ Rd×d and H0 := 1

n

∑n
i=1 H

0
i ; ξ

0 = 1
3: for each device i = 1, . . . , n in parallel do
4: Get ξk from the server
5: if ξk = 1
6: Compute local gradient ∇fi(zk) and send to the server
7: gki = ∇fi(zk), wk+1 = zk

8: if ξk = 0
9: gki = Hk

i (z
k − wk) +∇fi(wk), wk+1 = wk

10: Compute local Hessian ∇2fi(z
k)

11: Send Ski := Cki (∇2fi(z
k)−Hk

i) and lki := ‖∇2fi(z
k)−Hk

i ‖F to the server
12: Update local Hessian shift to Hk+1

i = Hk
i + αSki

13: end for
14: on server
15: gk = 1

n

n∑
i=1

gki , Sk = 1
n

∑n
i=1 S

k
i , lk = 1

n

∑n
i=1 l

k
i

16: Option 1: xk+1 = zk −
[
Hk
]−1

µ
gk

17: Option 2: xk+1 = zk −
[
Hk + lkI

]−1
gk

18: Update global Hessian shifts Hk+1 = Hk + αSk

19: Send sk := CkM(xk+1 − zk) to all devices i ∈ [n]
20: Update the model zk+1 = zk + ηsk

21: Sample ξk+1 ∼ Bernoulli(p) and send to all devices i ∈ [n]
22: for each device i = 1, . . . , n in parallel do
23: Get sk from the server and update the model zk+1 = zk + ηsk

24: end for

G.1 Model learning technique

In FedNL-BC we introduced “smart" model learning technique, which is similar to the proposed
Hessian learning technique. As in Hessian learning technique, the purpose of the model learning
technique is learn the optimal model x∗ in a communication efficient manner. This is achieved
by maintaining and progressively updating global model estimates zk for all nodes i ∈ [n] and for
the sever. Thus, the goal is to make updates from zk to zk+1 easy to communicate and to induce
zk → x∗ throughout the training process. Similar to the Hessian learning technique, the server
operates its own compressors CkM and updates the model estimates zk via the rule zk+1 = zk + ηsk,
where sk = CkM(xk+1 − zk) and η > 0 is the learning rate. Again, we reduce the communication cost
by explicitly requiring the server to send compressed model information sk to all clients.

G.2 Hessian corrected local gradients

The second key technical novelty in FedNL-PP is another structure of Hessian corrected local gradients

gki = Hk
i (z

k − wk) +∇fi(wk)

55

(see line 9 of Algorithm 5). The intuition behind this form is as follows. Uplink gradient compression
is done by Bernoulli compression synchronized by the server: namely, if the Bernoulli trial ξk ∼
Bernoulli(p) is successful (i.e., ξk = 1, see line 5), then all clients compute and communicate the
current true local gradients ∇fi(zk), otherwise (i.e., ξk = 0, see line 8) devices do not even compute
the local gradient. In the latter case, devices approximate current local gradient ∇fi(zk) based on
stale local gradient∇fi(wk) and current Hessian estimateHk

i via the rule g
k
i = Hk

i (zk−wk)+∇fi(wk),
wk is the last learned global model when Bernoulli trial was successful and local gradients are sent
to the server.

To further motivate the structure of gki , consider for a moment the case when Hk
i = ∇2fi(x

k).
Then gki = ∇2fi(x

k)(zk − wk) +∇fi(wk) is, indeed, approximates ∇f(zk) as

‖∇f(zk)−∇fi(wk)−∇2fi(x
k)(zk − wk)‖ ≤ L∗

2
‖zk − wk‖2 ≤ L∗‖zk − x∗‖2 + L∗‖wk − x∗‖2.

G.3 Local convergence theory

Similar to Assumptions 3.4 and 3.5, we need one of the following assumptions related to the
compression done by the master.

Assumption G.1. Compressors CkM ∈ C(δM) and learning rate (i) η = 1−
√

1− δM or (ii) δM = 1.

Assumption G.2. Compressors CkM ∈ B(ωM), learning rate 0 < η ≤ 1
ωM+1 . Moreover, for all

j ∈ [d], each entry (zk)j is a convex combination of {(xt)j}kt=0 for any k ≥ 0.

Note that Assumption 3.5 assumes that (Hk
i)jl is a convex combination of {(∇2fi(x

t))jl}kt=0 as
the Hessian learning technique is based on exact Hessians ∇2fi(x

k) at xk. However, in FedNL-BC,
the Hessian learning technique is based on Hessians ∇2fi(z

k) at zk. Hence, it makes sense to adapt
Assumption 3.5 and assume that (Hk

i)jl is a convex combination of {(∇2fi(z
t))jl}kt=0.

Moreover, we need alternatives to constants A, B, C, D in this case, which we denote by
AM, BM, CM, DM and define as follows

(AM, BM) :=


(η2, η) if Assumption G.1(i) holds
(δM4 ,

6
δM
− 7

2) if Assumption G.1(ii) holds
(η, η) if Assumption G.2 holds

(45)

(CM, DM) :=

{
(24, 8L2

F + 9/4L2
∗) if Option 1 is used in FedNL-BC

(32, 16L2
F + 9/4L2

∗) if Option 2 is used in FedNL-BC
. (46)

Following the same steps of Lemma C.1, one can show the following lemma for different com-
pressors applied by the master to handle Ek

[
‖zk + ηCkM(u− zk)− v‖2

]
term, where Ek[u] = u and

Ek[v] = v.

Lemma G.3. For any u, v ∈ Rd such that Ek[u] = u and Ek[v] = v, we have the following result
combining three different cases from (45):

Ek‖zk + ηCkM(u− zk)− v‖2 ≤ (1−AM)‖zk − v‖2 +BM‖u− v‖2.

56

The proof of Lemma G.3 can be obtained by repeating the proof of Lemma C.1 with small
modifications. Denote

rk :=
∥∥∥xk − x∗∥∥∥2

, νk :=
∥∥∥wk − x∗∥∥∥2

, γk =
∥∥∥zk − x∗∥∥∥2

.

E1 := 16L2
F, E2 := 16, E3 := 16L2

F + 8L2
∗.

We prove local linear rate for Lyapunov function Φk := ‖zk − x∗‖2 + AM
3p ‖w

k − x∗‖2. As a result,
we show that both zk → x∗ and wk → x∗ converge locally linearly.

Theorem G.4. Let Assumption 3.1 hold and assume that Hk ≤ AM
BM

µ2

9CM
and ‖zk − x∗‖2 ≤ AM

BM

µ2

9E3

for all k ≥ 0. Then, we have the following linear rate for FedNL-BC:

E
[
Φk
]
≤
(

1−min

{
AM

3
,
p

2

})k
Φ0.

We assumed inequalities Hk ≤ AM
BM

µ2

9CM
and ‖zk − x∗‖2 ≤ AM

BM

µ2

9E3
hold for all k ≥ 0. Next we

prove these inequalities using initial conditions only.

Lemma G.5. Let Assumptions 3.4 and G.1 hold. If

H0 ≤ AM

BM

µ2

9CM
, ‖z0 − x∗‖ ≤ min

{
AM

BM

µ2

9E3
,
A

BL2
F

AM

BM

µ2

9CM

}
,

then the same upper bounds hold for all k ≥ 0, i.e.,

Hk ≤ AM

BM

µ2

9CM
, ‖zk − x∗‖ ≤ min

{
AM

BM

µ2

9E3
,
A

BL2
F

AM

BM

µ2

9CM

}
.

Lemma G.6. Let Assumptions 3.5 and G.2 hold. If

‖x0 − x∗‖ ≤ min

{
µ2

9d2E3
,

µ2

9CMd4L2
∞

}
,

then the following upper bounds hold for all k ≥ 0, i.e.,

Hk ≤ µ2

9dCM
, ‖zk − x∗‖ ≤ min

{
µ2

9dE3
,

µ2

9CMd3L2
∞

}
. (47)

G.4 Proof of Theorem G.4

Consider Option 1 first and expand ‖xk+1 − x∗‖2:∥∥∥xk+1 − x∗
∥∥∥2

=

∥∥∥∥[Hk
µ

]−1
(Hk

µ(zk − x∗)− gk)
∥∥∥∥2

≤ 1

µ2

∥∥∥Hk
µ(zk − x∗)− gk

∥∥∥2
.

57

Then we decompose the term Hk
µ(zk − x∗)− gk as follows

Hk
µ(zk − x∗)− gk

= (Hk
µ −∇2f(zk))(zk − x∗) +

[
∇2f(zk)−∇f(zk) +∇f(x∗)

]
+
[
∇f(zk)− gk

]
= (Hk

µ −∇2f(zk))(zk − x∗) +
[
∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

]
+
[
∇f(zk)−∇f(wk)−Hk(zk − wk)

]
= (Hk

µ −∇2f(zk))(zk − x∗) +
[
∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

]
+
[
∇f(zk)−∇f(wk)−∇2f(zk)(zk − wk)

]
+ (∇2f(zk)−Hk)(zk − wk) (48)

and apply back to the previous inequality∥∥∥xk+1 − x∗
∥∥∥2

≤ 4

µ2

(∥∥∥(Hk
µ −∇2f(zk))(zk − x∗)

∥∥∥2
+
∥∥∥∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

∥∥∥2

+
∥∥∥∇f(zk)−∇f(wk)−∇2f(zk)(zk − wk)

∥∥∥4
+
∥∥∥(Hk −∇f(wk))(zk − wk)

∥∥∥4
)

≤ 4

µ2

(∥∥∥Hk −∇2f(zk)
∥∥∥2

F

∥∥∥zk − x∗∥∥∥2
+
∥∥∥Hk −∇2f(wk)

∥∥∥
F

∥∥∥zk − wk∥∥∥2

+
L2
∗

4

∥∥∥zk − x∗∥∥∥2
+
L2
∗

4

∥∥∥zk − wk∥∥∥2
)

≤ 4

µ2

(
2
∥∥∥Hk −∇2f(x∗)

∥∥∥2

F

∥∥∥zk − x∗∥∥∥2
+ 2

∥∥∥∇2f(zk)−∇2f(x∗)
∥∥∥2

F

∥∥∥zk − x∗∥∥∥2

+4

[∥∥∥Hk −∇2f(x∗)
∥∥∥2

F
+
∥∥∥∇2f(wk)−∇2f(x∗)

∥∥∥2

F

] [∥∥∥zk − x∗∥∥∥2
+
∥∥∥wk − x∗∥∥∥2

]
+
L2
∗

4

∥∥∥zk − x∗∥∥∥4
+
L2
∗

4

∥∥∥zk − wk∥∥∥4
)

≤ 4

µ2

(
2
∥∥∥Hk −∇2f(x∗)

∥∥∥2

F

∥∥∥zk − x∗∥∥∥2
+ 2L2

F

∥∥∥zk − x∗∥∥∥4

+4

[∥∥∥Hk −∇2f(x∗)
∥∥∥2

F
+ L2

F

∥∥∥wk − x∗∥∥∥2
] [∥∥∥zk − x∗∥∥∥2

+
∥∥∥wk − x∗∥∥∥2

]
+
L2
∗

4

∥∥∥zk − x∗∥∥∥4
+ 2L2

∗

∥∥∥zk − x∗∥∥∥4
+ 2H2

∥∥∥wk − x∗∥∥∥4
)

≤ 4

µ2

(
2Hkγk + 2L2

Fγ
2
k + 4

[
Hk + L2

Fνk

]
(γk + νk) +

L2
∗

4
γ2
k + 2H2γ2

k + 2L2
∗ν

2
k

)
= γk

(
24

µ2
Hk +

8L2
F + 9/4L2

∗
µ2

γk +
16L2

F

µ2
νk

)
+

16

µ2
Hkνk +

16L2
F + 8L2

∗
µ2

ν2
k , (49)

58

where

Hk :=
1

n

n∑
i=1

∥∥∥Hk
i −∇2fi(x

∗)
∥∥∥2

F
,

rk :=
∥∥∥xk − x∗∥∥∥2

, νk :=
∥∥∥wk − x∗∥∥∥2

, γk =
∥∥∥zk − x∗∥∥∥2

.

For Option 2 we have similar bound with different constants. Recall that µI � ∇2f(xk) �
Hk + lkI.∥∥∥xk+1 − x∗

∥∥∥ =

∥∥∥∥[Hk + lkI
]−1 ([

Hk + lkI
]

(zk − x∗)− gk
)∥∥∥∥ ≤ 1

µ

∥∥∥[Hk + lkI
]

(zk − x∗)− gk
∥∥∥ .

Then we decompose the term
[
Hk + lkI

]
(zk − x∗)− gk similar to (48):[

Hk + lkI
]

(zk − x∗)− gk

= (Hk −∇2f(zk))(zk − x∗) + lk(zk − x∗) +
[
∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

]
+
[
∇f(zk)−∇f(wk)−∇2f(zk)(zk − wk)

]
+ (∇2f(zk)−Hk)(zk − wk)

59

and apply back to the previous inequality∥∥∥xk+1 − x∗
∥∥∥2

≤ 5

µ2

(∥∥∥(Hk −∇2f(zk))(zk − x∗)
∥∥∥2

+ ‖lk(zk − x∗)‖2 +
∥∥∥∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

∥∥∥2

+
∥∥∥∇f(zk)−∇f(wk)−∇2f(zk)(zk − wk)

∥∥∥4
+
∥∥∥(Hk −∇f(wk))(zk − wk)

∥∥∥4
)

≤ 5

µ2

(∥∥∥Hk −∇2f(zk)
∥∥∥2

F

∥∥∥zk − x∗∥∥∥2
+
[
lk
]2
‖(zk − x∗)‖2 +

∥∥∥Hk −∇2f(wk)
∥∥∥
F

∥∥∥zk − wk∥∥∥2

+
L2
∗

4

∥∥∥zk − x∗∥∥∥2
+
L2
∗

4

∥∥∥zk − wk∥∥∥2
)

≤ 5

µ2

(
2

n

n∑
i=1

∥∥∥Hk
i −∇2fi(z

k)
∥∥∥2

F

∥∥∥zk − x∗∥∥∥2
+
∥∥∥Hk −∇2f(wk)

∥∥∥
F

∥∥∥zk − wk∥∥∥2

+
L2
∗

4

∥∥∥zk − x∗∥∥∥2
+
L2
∗

4

∥∥∥zk − wk∥∥∥2
)

≤ 5

µ2

(
4

n

n∑
i=1

∥∥∥Hk
i −∇2fi(x

∗)
∥∥∥2

F

∥∥∥zk − x∗∥∥∥2
+

4

n

n∑
i=1

∥∥∥∇2fi(z
k)−∇2fi(x

∗)
∥∥∥2

F

∥∥∥zk − x∗∥∥∥2

+4

[∥∥∥Hk −∇2f(x∗)
∥∥∥2

F
+
∥∥∥∇2f(wk)−∇2f(x∗)

∥∥∥2

F

] [∥∥∥zk − x∗∥∥∥2
+
∥∥∥wk − x∗∥∥∥2

]
+
L2
∗

4

∥∥∥zk − x∗∥∥∥4
+
L2
∗

4

∥∥∥zk − wk∥∥∥4
)

≤ 5

µ2

(
4Hk

∥∥∥zk − x∗∥∥∥2
+ 4L2

F

∥∥∥zk − x∗∥∥∥4

+4

[∥∥∥Hk −∇2f(x∗)
∥∥∥2

F
+ L2

F

∥∥∥wk − x∗∥∥∥2
] [∥∥∥zk − x∗∥∥∥2

+
∥∥∥wk − x∗∥∥∥2

]
+
L2
∗

4

∥∥∥zk − x∗∥∥∥4
+ 2L2

∗

∥∥∥zk − x∗∥∥∥4
+ 2H2

∥∥∥wk − x∗∥∥∥4
)

≤ 5

µ2

(
4Hkγk + 4L2

Fγ
2
k + 4

[
Hk + L2

Fνk

]
(γk + νk) +

9L2
∗

4
γ2
k + 2L2

∗ν
2
k

)
= γk

(
32

µ2
Hk +

16L2
F + 9/4L2

∗
µ2

γk +
16L2

F

µ2
νk

)
+

16

µ2
Hkνk +

16L2
F + 8L2

∗
µ2

ν2
k . (50)

Combining (49) and (50) with (46), we have

rk+1 ≤ γk
(
CM

µ2
Hk +

DM

µ2
γk +

E1

µ2
νk

)
+
E2

µ2
Hkνk +

E3

µ2
ν2
k , (51)

where E1 := 16L2
F, E2 := 16, E3 := 16L2

F + 8L2
∗.

Choosing y = zk and z = x∗ in Lemma C.1, we get the following recurrence for Hk:

Ek
[
Hk+1

]
≤ (1−A)Hk +BL2

Fγk. (52)

60

Choosing u = xk+1 and v = x∗ in Lemma G.3, we get the following recurrence for γk:

Ek [γk+1] (53)
≤ (1−AM)γk +BMrk+1

(50)
≤ (1−AM)γk + γk

(
BMCM

µ2
Hk +

BMDM

µ2
γk +

BME1

µ2
νk

)
+
BME2

µ2
Hkνk +

BME3

µ2
ν2
k .

Assume that Hk ≤ AM
BM

µ2

max(9CM,12E2) = AM
BM

µ2

9CM
and γk ≤ AM

BM

µ2

9 max(DM,E1,E3) = AM
BM

µ2

9E3
for all

k ≥ 0. Then from the update rule of wk we also have νk ≤ µ2AM

9BM max(DM,E1,E3) . Using this upper
bounds we can simplify the recurrence relation for γk to the following

Ek [γk+1] ≤
(

1− 2AM

3

)
γk +

AM

6
νk. (54)

In addition, from the update rule of wk we imply

Ek [νk+1] = (1− p)νk + pγk.

Finally, for the Lyapunov function

Φk = γk +
AM

3p
νk,

we have

Ek
[
Φk+1

]
= Ek [γk+1] +

AM

3p
Ek [νk+1]

≤
(

1− 2AM

3

)
γk +

AM

6
νk +

AM

3p
[(1− p)νk + pγk]

=

(
1− AM

3

)
γk +

(
1− p

2

) AM

3p
νk

≤
(

1−min

{
AM

3
,
p

2

})
Φk. (55)

G.5 Proof of Lemma G.5

We prove the lemma by induction. Let for some k we haveHk ≤ AM
BM

µ2

9CM
and γk ≤ min

{
AM
BM

µ2

9E3
, A
BL2

F

AM
BM

µ2

9CM

}
.

Then, from the definition of wk we have νk ≤ min
{
AM
BM

µ2

9E3
, A
BL2

F

AM
BM

µ2

9CM

}
. Since compressors CkM are

deterministic (Assumption G.1), from (54) we conclude

γk+1 ≤
(

1− 2AM

3

)
γk +

AM

6
νk ≤ max{γk, νk} ≤ min

{
AM

BM

µ2

9E3
,
A

BL2
F

AM

BM

µ2

9CM

}
.

Since compressors Cki are deterministic (Assumption 3.4), from (52) we conclude

Hk+1 ≤ (1−A)Hk +BL2
Fγk ≤ (1−A)

AM

BM

µ2

9CM
+BL2

F

A

BL2
F

AM

BM

µ2

9CM
=
AM

BM

µ2

9CM
.

61

G.6 Proof of Lemma G.6

First note that in this case AM = BM = η so that the ratio AM
BM

= 1. From the Assumption G.2, we
have H0

i = ∇2fi(z
0), from which we get

‖H0
i −∇2fi(x

∗)‖2M ≤ L2
∞‖z0 − x∗‖2 ≤ µ2

9dCM
,

which implies H0 ≤ µ2

9dCM
. Also notice that x0 = z0 so that (47) holds for k = 0. Next we do

induction. Let

Hk ≤ µ2

9dCM
, ‖zk − x∗‖ ≤ min

{
µ2

9dE3
,

µ2

9CMd3L2
∞

}
, ‖xk − x∗‖ ≤ min

{
µ2

9d2E3
,

µ2

9CMd4L2
∞

}
.

hold for all k ≤ K and prove it for k = K + 1. Using bounds Hk ≤ µ2

9dCM
and γk ≤ µ2

9dE3
we deduce

from (51) that

‖xK+1 − x∗‖2 ≤ 1

3d
γK +

1

6d
νK ≤

1

d
max{γK , νK} ≤ min

{
µ2

9d2E3
,

µ2

9CMd4L2
∞

}
.

Since (zK+1)j is a convex combination of {(xt)j}K+1
t=0 , we get

‖zK+1 − x∗‖2 =
d∑
j=1

|(zK+1 − x∗)j |2

≤
d∑
j=1

max
0≤t≤K+1

|(xt − x∗)j |2

≤ d max
0≤t≤K+1

‖xt − x∗‖2 ≤ min

{
µ2

9dE3
,

µ2

9CMd3L2
∞

}
.

Since (HK+1
i)jl is a convex combination of {(∇2fi(z

t))jl}K+1
t=0 , we get

‖HK+1
i −∇2fi(x

∗)‖2 =
d∑

j,l=1

|(HK+1
i −∇2fi(x

∗))jl|2

≤ d2L2
∞ max

0≤t≤K+1
‖zt − x∗‖2 ≤ µ2

9dCM
.

The last three inequalities complete the induction step and we conclude the lemma.

62

H Local Quadratic Rate of NEWTON-STAR for General Finite-Sum
Problems

In their recent work, Islamov et al. [2021] proposed a novel Newton-type method, which does
not update the Hessian estimator from iteration to iteration and, meanwhile, preserves fast local
quadratic rate of convergence. The method can be describe with a single update rule preformed by
the master:

xk+1 = xk −
[
∇2f(x∗)

]−1∇f(xk), k ≥ 0. (56)

Note that parallel nodes need to send the master only gradient information ∇fi(xk). Then master
aggregates them, performs the update step (56) and sends new parameters xk+1 to devices for the
next round. While this scheme is very simple-looking, notice that the update rule (56) depends on
the knowledge of ∇2f(x∗), where x∗ is the (unique) solution of (1). As we do not know x∗ (otherwise
there is no sense to do any training), this method, called NEWTON-STAR, is practically useless
and cannot be implemented. However, this method was quite useful in theory, since it led to a new
practical method.

Now, the local quadratic rate of NEWTON-STAR was shown using some special structure of local
loss functions fi(x). Here we provide a very simple proof of local quadratic rate which works for any
smooth losses and does not need special structure of fi(x).

Theorem H.1. Assume that f : Rd → R has L∗-Lipschitz Hessian and the Hessian at the optimum
x∗ is positive definite with parameter µ > 0. Then local convergence rate of NEWTON-STAR (56) is
quadratic, i.e., for any k ≥ 0 and initial point x0 ∈ Rd we have

‖xk+1 − x∗‖ ≤ L∗
2µ
‖xk − x∗‖2.

Proof. As we do not have a regularization term in our ERM problem, we imply ∇f(x∗) = 0. Hence

‖xk+1 − x∗‖ =
∥∥∥xk − x∗ − [∇2f(x∗)

]−1∇f(xk)
∥∥∥

≤
∥∥∥[∇2f(x∗)

]−1
∥∥∥∥∥∥∇2f(x∗)(xk − x∗)−∇f(xk) +∇f(x∗)

∥∥∥
≤ L∗

2µ
‖xk − x∗‖2,

where we used positive definiteness ∇2f(x∗) � µI and L∗-Lipschitzness of the Hessian ∇2f(x),
namely ∥∥∇2f(y)(x− y)−∇f(x) +∇f(y)

∥∥ ≤ L∗
2
‖x− y‖2, x, y ∈ Rd.

63

I Limitations

Here we discuss main limitations of our approach and directions which are not explored in this work.

• Our theory covers general convex (the rate (34)) and strongly convex (all other rates of this
paper) loss functions. We do not consider non-convex objectives in this work.

• All the proposed methods are analyzed in the regime when the exact local gradients and exact
local Hessians of local loss functions are computed for all participating devices. We do not
consider stochastic gradient or stochastic Hessian oracles of local loss functions in our analyses.

• We present separate methods/extensions (FedNL, FedNL-PP, FedNL-CR, etc) for each setup
(compressed communication, partial participation, globalization, etc) to make our contributions
clearer. For practical purposes, however, one might need to combine these extensions in order
to get a method which supports compressed communication, partial participation, globalization,
etc at the same time. We do not design a single master method containing all these extensions
as special cases.

• Finally, we do not provide strong (differential) privacy guarantees for our methods. Our privacy
enhancement mechanism offers the most rudimentary level of privacy only: we forbid the
devices do directly send/reveal their training data to the server.

64

J Table of Frequently Used Notation

Table 7: Notation we use throughout the paper.

Basic
d number of the model parameters to be trained
n number of the devices/workers/clients in distributed system

[n] := {1, 2, . . . , n}
fi local loss function associated with data stored on device i ∈ [n] (1)
f := 1

n

∑n
i=1 fi(x), overall empirical loss/risk (1)

x∗ trained model, i.e., the optimal solution to (1)
ε target accuracy

Rd×d the set of d× d square matrices
(M)jl the element at jth row and lth column of matrix M

Standard
µ strong convexity parameter of f Asm 3.1
L Lipschitz constant of the gradient ∇f(x) w.r.t. the Euclidean norm Thm E.1
L∗ Lipschitz constant of the Hessian ∇2f(x) w.r.t. the spectral norm Asm 3.1
LF Lipschitz constant of the Hessian ∇2f(x) w.r.t. the Frobenius norm Asm 3.1
L∞ Lipschitz constant of the Hessian ∇2f(x) w.r.t. the max norm Asm 3.1
C (possibly randomized) compression operator C : Rd → Rd (3), (4)

B(ω) class of unbiased compressors with bounded variance ω ≥ 0 Def 3.2
C(δ) class of deterministic contractive compressors with contraction δ ∈ [0, 1] Def 3.3

Algorithm names
GD Gradient Descent

GD-LS GD with Line Search procedure
DIANA Compressed GD with variance reduction [Mishchenko et al., 2019]

ADIANA DIANA with Nesterov’s acceleration [Li et al., 2020b]
N classical Newton
NS Newton Star (56)
N0 Newton Zero (new) (10)

N0-LS Newton Zero with Line Search procedure (new)
NL1, NL2 Newton Learn methods of Islamov et al. [2021]

CNL Cubic Newton Learn [Islamov et al., 2021]
DINGO Distributed Newton-type method of Crane and Roosta [2019]
FedNL Federated Newton Learn (new) Alg 1

FedNL-PP Extension to FedNL: Partial Participation (new) Alg 2
FedNL-LS Extension to FedNL: Globalization via Line Search (new) Alg 3
FedNL-CR Extension to FedNL: Globalization via Cubic Regularization (new) Alg 4
FedNL-BC Extension to FedNL: Bidirectional Compression (new) Alg 5

Federated Newton Learn (FedNL)
Hk
i estimate of the local optimal Hessian ∇2fi(x

∗) at client i in iteration k
Hk estimate of the global optimal Hessian ∇2f(x∗) at the server in iteration k
α Hessian learning rate
Cki compression operator applied by the client i in iteration k
Ski := Cki (∇2fi(x

k)−Hk
i) compressed second order information

lki := ‖∇2fi(x
k)−Hk

i ‖F compression error
A, B constants depending on the choice of compressors Cki and learning rate α (5)
C, D constants depending on which option is chosen for the global update (5)

Experiments
{aij , bij} jth data point stored in device i (11)

m number of local training data points (11)
λ regularization parameter (11)

65

	1 Introduction
	1.1 First-order methods for FL
	1.2 Towards second-order methods for FL
	1.3 Desiderata for second-order methods applicable to FL

	2 Contributions
	2.1 The Newton Learn framework of Islamov2021NewtonLearn
	2.2 Issues with the Newton Learn framework
	2.3 Our mydarkgreenFedNL framework

	3 The Vanilla Federated Newton Learn
	3.1 New Hessian learning technique
	3.2 Compressing matrices
	3.3 Two options for updating the global model
	3.4 Local convergence theory
	3.5 mydarkgreenFedNL and the ``Newton Triangle''

	4 mydarkgreenFedNL with Partial Participation, Globalization and Bidirectional Compression
	4.1 Partial Participation (see Section D)
	4.2 Globalization via Line Search (see Section E)
	4.3 Globalization via Cubic Regularization (see Section F)
	4.4 Bidirectional Compression (see Section G)

	5 Experiments
	5.1 Parameter setting
	5.2 Local convergence
	5.3 Global convergence
	5.4 Comparison with mydarkgreenNL1

	A Theoretical Comparisons with Related Works
	B Extra Experiments
	B.1 Data sets
	B.2 Parameters setting
	B.3 Compression operators
	B.3.1 Random dithering for vectors
	B.3.2 Rank-R compression operator for matrices
	B.3.3 Top-K compression operator for matrices
	B.3.4 Rand-K compression operator for matrices

	B.4 Projection onto the cone of positive definite matrices
	B.5 The effect of compression
	B.6 Comparison of Options 1 and 2
	B.7 Comparison of different compression operators
	B.8 Comparison of different update rules for Hessians
	B.9 Bidirectional compression
	B.10 The performance of mydarkgreenFedNL-PP
	B.11 Comparison with mydarkgreenNL1
	B.12 Local comparison
	B.13 Global compersion
	B.14 Effect of statistical heterogeneity

	C Proofs of Results from Section 3
	C.1 Auxiliary lemma
	C.2 Proof of Theorem 3.6
	C.3 Proof of Lemma 3.7
	C.4 Proof of Lemma 3.8

	D Extension: Partial Participation (mydarkgreenFedNL-PP)
	D.1 Hessian corrected local gradients gik
	D.2 Importance of compression errors lik
	D.3 Local convergence theory
	D.4 Proof of Theorem D.1
	D.5 Proof of Lemma D.2
	D.6 Proof of Lemma D.3

	E Extension: Globalization via Line Search (mydarkgreenFedNL-LS)
	E.1 Line search procedure
	E.2 Local convergence theory
	E.3 Proof of Theorem E.1
	E.4 Proof of Lemma E.2

	F Extension: Globalization via Cubic Regularization (mydarkgreenFedNL-CR)
	F.1 Cubic regularization
	F.2 Solving the subproblem
	F.3 Importance of compression errors lik
	F.4 Global and local convergence theory
	F.5 Proof of Theorem F.1
	F.6 Proof of Lemma F.2

	G Extension: Bidirectional Compression (mydarkgreenFedNL-BC)
	G.1 Model learning technique
	G.2 Hessian corrected local gradients
	G.3 Local convergence theory
	G.4 Proof of Theorem G.4
	G.5 Proof of Lemma G.5
	G.6 Proof of Lemma G.6

	H Local Quadratic Rate of mydarkgreenNEWTON-STAR for General Finite-Sum Problems
	I Limitations
	J Table of Frequently Used Notation

