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Abstract

Modern optimization algorithms that incorporate momentum and adaptive step-size offer
improved performance in numerous challenging deep learning tasks. However, their effectiveness
is often highly sensitive to the choice of hyperparameters, especially the step-size. Tuning
these parameters is often difficult, resource-intensive, and time-consuming. Therefore, recent
efforts have been directed toward enhancing the stability of optimizers across a wide range of
hyperparameter choices [Schaipp et al., 2024]. In this paper, we introduce an algorithm that
matches the performance of state-of-the-art optimizers while improving stability to the choice of
the step-size hyperparameter through a novel adaptation of the NGN step-size method [Orvieto
and Xiao, 2024]. Specifically, we propose a momentum-based version (NGN-M) that attains the
standard convergence rate of O(1/

√
K) under less restrictive assumptions, without the need for

interpolation condition or assumptions of bounded stochastic gradients or iterates, in contrast
to previous approaches. Additionally, we empirically demonstrate that the combination of the
NGN step-size with momentum results in enhanced robustness to the choice of the step-size
hyperparameter while delivering performance that is comparable to or surpasses other state-of-
the-art optimizers.

1 Introduction

Adaptive methods such as Adam [Kingma and Ba, 2015] and RMSprop [Hinton et al., 2012] are widely
used in machine learning due to their established advantages over (momentum) SGD, particularly
in tasks such as training Transformers [Brown, 2020, Touvron et al., 2021, 2023]. These methods
adaptively scale the step-size across different dimensions (parameters) based on their respective
statistics, effectively acting as a diagonal preconditioning.

Although these methods perform well in practice, existing theoretical analyses typically require
stringent assumptions on the noise structure of the stochastic gradients, such as sub-Gaussian noise
[Li et al., 2024] or affine noise models [Wang et al., 2024, Zhang et al., 2024a]: Relaxing these
assumptions remains an open challenge. Another well-known issue of Adam is its performance sen-
sitivity to the step-size hyperparameter [Wilson et al., 2017, Choi et al., 2019], particularly when
training Transformers, where loss spikes are commonly observed [Molybog et al., 2023, Wortsman
et al., 2023]. This often necessitates careful adjustments of the hyperparameters throughout the
training process [Zhang et al., 2022, Chowdhery et al., 2023], which can be costly in terms of com-
putational resources [Or et al., 2020]. Consequently, there has been growing interest in developing
optimization methods that are more robust to hyperparameter selection [Schaipp et al., 2024]. In
addition to adapting the step-size, Adam and other state-of-the-art optimizers also rely on momen-
tum [Polyak, 1964], a broadly used technique that has been shown to enhance performance both
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theoretically [Cutkosky and Mehta, 2020, Fatkhullin et al., 2024, Islamov et al., 2024b, 2025] and
practically [Choi et al., 2019, Fu et al., 2023, Jelassi and Li, 2022]. Besides speeding up conver-
gence, momentum is known as a technique to reduce the variance of stochastic algorithms [Ma and
Yarats, 2018, Cutkosky and Orabona, 2019], improving stability as well as generalization in some
settings [Jelassi and Li, 2022].

In this work, we address the aforementioned drawbacks of Adam by developing a new algorithm
based on the recently proposed NGN step-size [Orvieto and Xiao, 2024], an improved variant of the
Stochastic Polyak Step-size [Loizou et al., 2021] that has demonstrated strong resilience to step-size
hyperparameter tuning. In particular, NGN was shown never to diverge for any choice of the step-
size hyperparameter in the convex setting, and to exhibit strong curvature adaptation properties
strengthened by theoretical guarantees. However, the step-size of Orvieto and Xiao [2024] simply
adapts the learning rate through a scalar multiplier, leaving to future work the incorporation of
momentum and coordinate-wise variants – needed in complex problems such as optimizing trans-
formers, as motivated above. Here, we develop a momentum and step-size adaptive version of NGN
designed to enhance robustness in terms of hyperparameter selection. We also present a theoretical
analysis alongside a practical evaluation of this approach, showcasing its improvements over current
state-of-the-art methods.

In summary, our contributions are as follows:

1. We introduce a new algorithm named NGN-M that combines the NGN step-size with momen-
tum. We theoretically show that NGN-M achieves a convergence rate O(1/

√
K) in the convex

regime without the typical requirements of interpolation or bounded gradient assumptions
found in earlier works;

2. We focus on the problem of adapting the step-size rule towards a coordinate-wise diagonal
preconditioning. By integrating this diagonal step-size strategy with momentum, we develop
a new variant of NGN, called NGN-MD;

3. The theoretical results are supported by extensive empirical validation in various deep learning
settings where we demonstrate that NGN-M and NGN-MD not only preserve the robustness
property of the NGN step-size, but improve it further in many cases. The step-size hyperpa-
rameter resilience comes together with better or comparable performance to state-of-the-art
algorithms.

2 Related Works

Polyak Step-size. When training a deep network with standard optimizers, tuning the learning
rate is crucial but time-consuming and resource-intensive [Goodfellow et al., 2016]. This issue is at
the root of recent research focusing on transferring hyperparameters across architectures at different
scales, therefore avoiding expensive tuning pipelines [Yang et al., 2022, 2023, Bordelon et al., 2023].
Yet, in the convex setting, choosing the learning rate can already be difficult – an issue that was
studied already in Polyak [1987] and gave rise to the first adaptive method: the Polyak Stepsize (PS).
Recently, there has been a renewed interest in adapting PS to modern settings [Loizou et al., 2021,
Orvieto et al., 2022, Jiang and Stich, 2024], delivering a theoretically principled way to scale the
gradient magnitude during training adaptively. PS-inspired methods have gained increasing interest
for their simplicity and adaptability, as they utilize local curvature and smoothness information to
accelerate algorithms and facilitate faster convergence. Orvieto and Xiao [2024] recently introduced
a variant of the Stochastic Polyak step-size, called NGN, which further enhances the robustness of the
step-size hyperparameter and solidifies the link to Gauss-Newton preconditioning. The theoretical
analysis in Orvieto and Xiao [2024] demonstrated that NGN does not diverge regardless of the choice
of the step-size hyperparameter, and converges fast when the step-size is appropriately tuned. In
contrast, the current theory of the SPS step-size with fixed step-size hyperparameters [Loizou et al.,
2021] proves convergence to the exact solution only if the interpolation condition holds1.

1In our notation, this means that σ2
int = 0.
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Table 1: Summary of existing methods exploiting Polyak-type adaptive step-sizes and their con-
vergence guarantees. Mom.=Supports momentum; Diag.=Supports diagonal step-sizes. σ2

int is
defined in Section 4. x∗ defines an optimal solution to equation 4. O notation hides absolute and
problem-dependent constant factors and logarithmic terms in the rate.

Method Rate (a) Mom. Diag. Comments

SPSmax [Loizou et al., 2021] O(1/K + σ2
int) ✗ ✗

Conv. to non-vanishing
neighbourhood

ALR-SMAG [Wang et al., 2023] O((1− ρ)K + σ2
int) ✓ ✗

Strong convexity
Conv. to non-vanishing

neighbourhood

Momo [Schaipp et al., 2024] O(1/
√
K) ✓ ✗

Bounded stoch. gradients
Interpolation

Momo-Adam [Schaipp et al., 2024] ✗ ✓ ✓
Momo framework

for Adam

MomSPSmax [Oikonomou and Loizou, 2024] O(1/K + σ2
int) ✓ ✗

Conv. to non-vanishing
neighbourhood

NGN [Orvieto and Xiao, 2024] O(1/
√
K) ✗ ✗ −

NGN-M (Alg. 1)
[This work] O(1/

√
K) ✓ ✗ −

NGN-MDv1 (Alg. 2)
[This work] ✗ ✓ ✓

Combination of
NGN-M and RMSprop

NGN-MDv2 (Alg. 2)
[This work] ✗ ✓ ✓

Combination of
NGN-M and NGN-D

NGN-D (Alg. 3)
[This work] O(1/

√
K) ✗ ✓ −

Polyak Step-size and Heavy-ball Momentum. Heavy-ball momentum methods, stemming
from the work of Polyak [1964], have gained significant attention over the years due to their benefits,
including acceleration on convex quadratics [Jain et al., 2018, Lee et al., 2022, Bollapragada et al.,
2022], convex-like [Wang et al., 2022], and non-convex problems [Cutkosky and Mehta, 2020], as well
as their variance reduction abilities [Ma and Yarats, 2018, Cutkosky and Orabona, 2019]. This has
led to growing interest in the combination of Polyak step-size and heavy-ball momentum, which is
an active area of research [Barré et al., 2020, Saab et al., 2022, Barré et al., 2020, Wang et al., 2023,
Oikonomou and Loizou, 2024, Gower et al., 2025]. Recently, Schaipp et al. [2024] demonstrated
that a geometrically principled combination of SPS and momentum leads to lower sensitivity to the
step-size hyperparameter, although they did not provide strong theoretical convergence guarantees.

Diagonal Polyak Step-size. Coordinate-wise adaptive step-sizes are essential in training Trans-
former architectures due to the varying parameter-wise scaling and conditioning of the problem
[Noci et al., 2022, Zhang et al., 2024b]. Algorithms employing diagonal step-sizes, such as Adam and
SignSGD [Bernstein et al., 2018], typically outperform non-diagonal methods in language modeling
tasks by addressing issues such as class imbalance (where certain words appear more frequently than
others) [Kunstner et al., 2023, 2024] and heavy-tailed noise [Zhang et al., 2019, 2020, Compagnoni
et al., 2025]. It is, therefore, paramount in current setups to deliver adaptive step-size improvements
targeted to the coordinate-wise (diagonal) regime. However, most Polyak-step-size-based algorithms
only focus on a single step-size for all parameters [Loizou et al., 2021, Wang et al., 2023, Gower
et al., 2021, Oikonomou and Loizou, 2024, Orvieto and Xiao, 2024]. Only a few works propose a
diagonal-wise modification of Polyak-step-size by either using Adam preconditioner [Schaipp et al.,
2024] as a weight matrix or incorporating second-order information from the objective function [Li
et al., 2022, Richtárik et al., 2024].

Table 1 provides a theoretical comparison of various Polyak step-size-based algorithms that in-
corporate momentum and/or diagonal step-size, highlighting the differences between the theoretical
results presented in this work and those from prior works.
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3 Algorithm design of NGN-M and NGN-D

In Orvieto and Xiao [2024], the NGN step-size is derived by applying a Gauss–Newton update on
a regularized first-order expansion of r(x) :=

√
f(x). At the current point xk, they linearized

r(xk + p) ≈ r(xk) +∇r(xk)⊤p. Thus the next iterate is given as xk+1 = xk + pk where

pk := argmin
p

[
(r(xk) +∇r(xk)⊤p)2 + 1

2c∥p∥
2
]
. (1)

It turns out that the problem above has a closed-form solution

pk = −γk∇f(xk) where γk := c
1+ c

2f(xk)
∥∇f(xk)∥2 ,

with γk representing the NGN step-size. In Orvieto and Xiao [2024], convergence guarantees were
established for both convex and general non-convex settings. Importantly, the convex analysis
shows that NGN exhibits a non-divergence property, regardless of the step-size hyperparameter c
(see Theorem 4.5 in [Orvieto and Xiao, 2024]). Due to this property, the NGN step-size is a strong
candidate to achieve better robustness w.r.t. the choice of the step-size.

3.1 How to Add Momentum and What to Expect?

There are several approaches to combining the adaptive Polyak-type step-size with heavy-ball mo-
mentum. Broadly, existing algorithms can be divided into two categories: the first category involves
computing the Polyak step-size in the usual manner and incorporating it into the standard heavy-
ball update [Oikonomou and Loizou, 2024]. In contrast, algorithms from the second category first
determine an update direction using exponential weighted averaging of the stochastic gradient and
momentum variable, and then compute the Polyak-type step-size based on the computed direction
[Wang et al., 2023, Schaipp et al., 2024]. Following this principled approach, we test two possible
versions for combining the NGN step-size and momentum:

Ver.1 :


γk = c

1+ c

2fSk
(xk)

∥∇fSk
(xk)∥2

mk = βmk−1 + (1− β)γk∇fSk
(xk)

xk+1 = xk −mk

Ver.2 :


mk = βmk−1 + (1− β)∇fSk

(xk)

γk = c
1+ c

2fSk
(xk)

∥mk∥2

xk+1 = xk − γkm
k

.

Before we proceed, we should answer the question: “What do we expect from the combination of
NGN step-size and momentum?”. First, we aim to preserve, and ideally enhance, NGN’s robustness
to the step-size hyperparameter. Additionally, we seek improved performance, achieving accelerated
convergence akin to the advantage of SGD with momentum (SGDM) over standard SGD in convex
settings. With these goals in mind, we now show that version 1 meets all of these criteria, while
version 2 is less suitable. To gain some intuition regarding the performance of these two variants,
we start by conducting a simple experiment on a quadratic function f(x) = 1

2∥Ax− b∥2 where A is
a data matrix from the normalized Diabetes dataset [Smith et al., 1988] and b is a vector of labels.
Based on the results from Figure 1 (left), we observe that variant 1 achieves accelerated convergence
as SGDM for middle-range step-size hyperparameters (c ∈ {101, 102}) and does not diverge for large
step-size parameter (c ∈ {103}). Conversely, version 2 has a worse convergence rate than version
1 for middle-range step-size parameters and diverges for large ones. Therefore, we theoretically
analyze and practically test version 1, which we call NGN-M.

3.2 Evidence of Robustness of NGN-M

To illustrate the advantages of the design choice NGN-M, we first consider the Rosenbrock function
f(x, y) = (x− 1)2+100(y−x2)2, whose minimizer is at (1, 1). Starting from (−1.2, 1), we run both
NGN-M and SGDM over a wide range of constant step-size hyperparameters {10−3, . . . , 102}. As
shown in Figure 1, we observe that (i) for small step-size hyperparameter both methods successfully

4
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Figure 1: Left: Comparison of SGDM, NGN, NGN-M for linear regression on normalized Diabetes
dataset varying a step-size hyperparameter. Second left: Comparison of two options on how
momentum can be used in combination with NGN step-size. Third and fourth: Comparison of
SGDM and NGN-M on the Rosenbrock function.

converge to (1, 1); (ii) SGDM already diverges for the step-size hyperparameter 10−2; By contrast,
NGN-M remains stable even up to c = 102, thanks to its adaptive step-size that automatically adjusts
with the local curvature. Figure I.3 further traces the optimization trajectories: NGN-M converges
reliably for every tested value of c, whereas SGDM fails outside its narrow stability window. Finally,
in Appendix I.1 we repeat these experiments on a synthetic multimodal function and find that
NGN-M consistently finds the global minimum, while SGDM typically becomes trapped in a nearby
suboptimal local minimum.

3.3 Diagonal Step-size for NGN

We propose two alternatives to make NGN step-size coordinate-wise adaptive. In the first approach,
we modify an approach of (1): The next iterate xk+1 is obtained by minimizing an approximation
of the regularized first-order Taylor expansion of r(x) :=

√
f(x) around xk, namely, xk+1 = xk + pk

where for a preconditioning matrix Σk

pk = argmin
p

[
(r(xk) +∇r(xk)⊤p)2 + 1

2c∥p∥
2
Σk

]
. (2)

The intuition is that Σk ∈ Rd×d can penalize each parameter with its own weight while in vanilla
NGN the penalization is the same for all parameters, and f is an objective function we aim to
minimize. Performing simple derivations (see Appendix G), we obtain the following update rule

xk+1 = xk − c
1+ c

2f(xk)
∥∇f(xk)∥2

Σ−1
k

Σ−1
k ∇f(xk). (3)

Note that by choosing Σk to be an identity matrix, the step-size γk in (3) reduces to the vanilla
NGN step-size.

Alternatively, we can adopt a simpler, coordinate-wise rule: For each parameter j, we replace
the full gradient norm in the NGN step-size with its own partial derivative ∇jfSk

(xk). Both of the
described per-coordinate variants can be further adjusted by an RMSprop-style preconditioner Dk =
diag((Dk)(1), . . . , (Dk)(d)) and lead to the following update rule (see Alg. 2 for a full description)

NGN-MDv1 :

γk = c
1+ c

2f(xk)
∥∇fSk

(xk)∥2
D−1

k

Σ−1
k = γkD

−1
k

NGN-MDv2 :

γ
(j)
k =

c/(Dk)(j)

1+
c/(Dk)j

2f(xk)
(∇jfSk

(xk))2

Σ−1
k = diag(γ(1)k , . . . , γ

(d)
k )

xk+1 = xk − (1− β1)Σ
−1
k ∇fSk

(xk) + β1(x
k − xk−1)

We highlight that both versions have the same number of hyperparameters as Adam. From an
empirical evaluation of two versions of NGN-MD in Figure 2, we observe that the first choice improves
the performance of NGN-M while maintaining robustness to step-size hyperparameter. A more
detailed discussion on the two versions of NGN-MD algorithms is deferred to Appendix G.1.
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Algorithm 1 NGN-M

1: Input: x−1 = x0 ∈ Rd, step-size hyperparameter c > 0, momentum parameter β ∈ [0, 1)
2: for k = 0, 1, . . . ,K − 1 do
3: Sample a batch Sk ⊆ [n]
4: γk = c

1+ c

2fSk
(xk)

∥∇fSk
(xk)∥2

5: xk+1 = xk − (1− β)γk∇fSk
(xk) + β(xk − xk−1)

6: end for

In the special case β1 = 0 and Σk = I, NGN-MDv2 reduces to NGN-D (Alg. 3). To the best of
our knowledge, NGN-D is the first algorithm that uses a per-parameter Polyak-type step-size while
achieving the standard O(1/

√
K) rate under smoothness and bounded noise variance assumptions;

see detailed discussion in Appendix C.

4 Theoretical Analysis of NGN-M

4.1 Problem Formulation and Notation

We consider the classic Empirical Risk Minimization (ERM) problem that typically appears when
training machine learning models, namely,

min
x∈Rd

[
f(x) := 1

n

∑n
i=1 fi(x)

]
, (4)

where x are the parameters of a model we aim to train, n is the number of data points in the
dataset, d is the number of parameters, x∗ denotes the solution to equation 4, and fi represents
the loss associated with the i-th data point/batch. We assume that each fi is differentiable and
non-negative2 and that the global optimal value is bounded, i.e. f∗ = argminx f(x) ∈ R. Moreover,
we assume that we have access to mini-batch stochastic losses fS during training such that f∗

S :=
argminx fS(x) < ∞ for any S ⊆ [n] picked uniformly at random.

We analyze the convergence of NGN-M under assumptions that are often used in the analysis of
the Polyak step-size [Loizou et al., 2021, Orvieto et al., 2022, Orvieto and Xiao, 2024, Oikonomou
and Loizou, 2024, Schaipp et al., 2024].

Assumption 1. Each fi is convex and L-smooth, i.e., for all x, y ∈ Rd and i ∈ [n] we have
⟨∇fi(x), y − x⟩ ≥ fi(x)− fi(y) and ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

Assumption 2. The interpolation σ2
int := ES [f

∗−f∗
S ] and positive σ2

pos := ES [f
∗
S ] errors are bounded.

We say that the interpolation holds if σ2
int = 0, where S is a sampled mini-batch.

4.2 Convergence Guarantees

Theorem 1. Let Assumptions 1, 2 hold. Let the step-size hyperparameter c > 0 and the momentum
parameter β = λ

1+λ be constants where λ ≤ min{cL, 0.5(1 + cL)−1(1 + 2cL)−1}. Then the iterates
of NGN-M (Alg. 1) satisfy

E
[
f(xK−1)− f(x∗)

]
≤ ∥x0−x∗∥2(1+2cL)2

cK + 8cL(1 + 2cL)2σ2
int + 2cLmax {2cL− 1, 0}σ2

pos,

where xK−1 is chosen uniformly at random from {x0, . . . , xK−1}. Moreover, if we set c = O(1/
√
K)

then we obtain E
[
f(xK−1)− f(x∗)

]
≤ O(1/

√
K).

The convergence of NGN-M is provided in the convex setting, which is motivated by recent
works that observe convex-like structures in the loss landscape of neural networks [Islamov et al.,
2024a, Hoang et al., 2024] and agreement between convex theory and practice [Schaipp et al.,

2Common losses, e.g. cross-entropy, satisfy this condition.
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Algorithm 2 NGN-MD

1: Input: x0 ∈ Rd, step-size hyperparameter c > 0, momentum parameters β1, β2 ∈ [0, 1), stabi-
lization parameter ε > 0, second-order momentum v0 = 0

2: for k = 0, 1, . . . ,K − 1 do
3: Sample a batch Sk ⊆ [n]
4: vk = β2v

k−1 + (1− β2)(∇fSk
(xk)⊙∇fSk

(xk))

5: Dk = diag(εI+
√

vk/(1− βk
2 ))

6: For NGN-MDv1: γk = c
1+ c

2fSk
(xk)

∥∇fSk
(xk)∥2

D−1
k

7: For NGN-MDv1: Σ−1
k = γkD

−1
k

8: For NGN-MDv2: Σ−1
k = diag(γ

(1)
k , . . . , γ

(d)
k ) where γ

(j)
k =

c/(Dk)(j)
1+ c

2fSk
(xk)·(Dk)(j)

(∇jfSk
(xk))2

9: xk+1 = xk − (1− β1)Σ
−1
k ∇fSk

(xk) + β1(x
k − xk−1)

10: end for

2025]. Importantly, we show that (i) when the constant c is sufficiently small, NGN-M attains
the same convergence rate as SGDM [Garrigos and Gower, 2023]. Moreover, for any choice of c,
we demonstrate that the NGN-M iterates provably converge to a neighborhood of the optimum and
thereafter remain within it; (ii) Unlike prior works, our analysis does not rely on strong assumptions
such as bounded gradients, interpolation, or a bounded domain; (iii) For small values of c, NGN-M
converges to the exact solution while algorithms such as MomSPS and ALR-SMAG were shown to
converge up to a non-vanishing neighborhood of the solution only3. Notably, the non-vanishing
neighborhood disappears when the problem satisfies interpolation: We refer to Table 1 for more
details and exact rates; (iv) The momentum parameter β is theoretically recommended to be set
sufficiently small. A default value of β = 0.9 is commonly used and works well in our experiments.
This discrepancy between theoretical guidance and practical implementation has also been observed
in prior works on momentum [Ghadimi et al., 2015, Liu et al., 2020, Wang et al., 2023, 2022,
Oikonomou and Loizou, 2024]. Interestingly, for simple functions we can establish convergence even
when β is large (see Appendix F), indicating that the small-β requirement may be an artifact of
the existing proving techniques rather than an inherent algorithmic limitation of NGN-M. We leave
a comprehensive study of arbitrary β values across general convex objectives for future work; (v)
While Theorem 1 requires knowing the total iteration count K to ensure convergence, this might
be impractical: We therefore also prove convergence using a diminishing step-size of order 1/

√
k

in Appendix E, which removes the need to preset K; (vi) Finally, we corroborate our analysis as
we run NGN-M with the theory-derived values of c to a quadratic problem that satisfies all our
assumptions: We observe NGN-M’s rapid convergence with theoretical step-size hyperparameters in
practice—see Appendix I.3 and Figure I.4 therein.

Key Ingredients of the Proof. We discuss the key steps of the proof to highlight the main
challenges in the analysis.

First, we make use of the Iterative Moving Average (IMA) formulation of momentum [Sebbouh
et al., 2021]. Specifically, we define a sequence of virtual iterates {zk} whose update rule is of the
form

zk+1 = xk − γk∇fSk
(xk), xk+1 = λ

1+λx
k + 1

1+λz
k+1, where z0 := x0 and β = λ

1+λ .

Next, one of the key technical strategies we follow is splitting the step-size γk into two parts: a
fixed term ρ = c

(1+cL)(1+2cL) = O(c) and a changing term γ̃k ≤ 3c2L
1+2cL = O(c2). This decomposition

of the step-size γk enables us to regulate the balance between the descent term, which drives im-
provement in the objective, and the error term, which reflects possible inaccuracies. More precisely,
the descent term is weighted by c while the error term proportional to σ2

int is weighted by c2, which
suggests that c has to be chosen to tradeoff the two terms to lead to the exact convergence similarly

3In fact, this is an inherited property of SPS analysis from [Loizou et al., 2021].
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Figure 2: Stability performance of algorithms varying step-size hyperparameter (c for NGN-M, NGN-
MDv1 and NGN-MDv2, α0 for Momo and Momo-Adam, and step-size for SGDM and Adam). For
NGN-M and NGN-MDv1, we observe that the range of the step-size hyperparameters that provide
competitive performance is wider than that for other algorithms. We refer to Figures J.1 to J.3, J.5
and J.8 for train loss stability and for the results on additional workloads.
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Figure 3: Stability performance on ImageNet1k varying the step-size hyperparameter. NGN-M and
NGN-MDv1 achieve higher accuracy for a wider range of the step-size hyperparameters. We refer to
Figure J.4 for results on train loss stability and additional results on ImageNet32.

to the standard analysis of SGD [Garrigos and Gower, 2023]. In contrast, MomSPS and Momo
algorithms achieve the exact convergence only under the interpolation regime.

5 Experiments

We now turn to the empirical evaluation of the proposed algorithms against several benchmarks.
The detailed experiment setup, including the choice of hyperparameters as well as additional ex-
perimental results and details, can be found in Appendix J. The best performance of algorithms is
reported in Tables 4 (momentum-based algorithms), 5 (algorithms with momentum and component-
wise step-size), and 6 (algorithms with component-wise step-size). For clarity and quick reference,
all links to the paper’s empirical results are summarized in Table 3.

Comparison on Standard Benchmarks. First, we test the performance of NGN-M against
other methods that use momentum, such as SGDM, Momo, MomSPS, ALR-SMAG, and NGN. The
tests include the training of Resnet20 [He et al., 2016] and ViT [Dosovitskiy et al., 2021] on the
CIFAR10 dataset [Krizhevsky et al., 2009], and Resnet110 on CIFAR100. Second, we test the
performance of NGN-MD against Adam and Momo-Adam that – contrary to NGN-M – both use
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Figure 4: Language Modeling on SlimPajama. Stability comparison with respect to the step-size
hyperparameter across different model sizes and optimizers. At all model capacities, NGN-MDv1
achieves similar or lower perplexity, showing better stability and improved performance at larger
learning rates. We refer to Figures J.11 to J.14 for the results that report update magnitude when
training 160M model and training dynamics across all model sizes.
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Figure 5: The step-size of Momo, NGN-M (two left), Momo-Adam and NGN-MDv1 (two right)
during the training of ViT on CIFAR10. We demonstrate the step-sizes τk for Momo and Momo-
Adam and γk for NGN-M and NGN-MDv1 varying step-size parameters α0 and c correspondingly.
We refer to Figures J.9 and J.10 for the results in training Resnet20.

component-wise preconditioning. All experiments in this section do not use learning rate schedulers
or weight decay.

From Tables 4 and 5 we observe that the best performance of NGN-M and NGN-MDv1 matches
the results of other algorithms: NGN-M and NGN-MDv1 exhibit competitive performance across
all settings we tested. Importantly, NGN-M and NGN-MDv1 demonstrate significantly greater ro-
bustness to the choice of the step-size hyperparameter. Indeed, Figure 2 shows that the range of
step-size hyperparameter that allows NGN-M and NGN-MDv1 to perform optimally is much wider:
We can, for instance, use step-sizes that are 1-2 orders of magnitude larger than the optimal one
without a significant drop in the performance. This is particularly evident when training ResNet20
and ViT models. Besides, we clearly observe that momentum consistently improves the stability
of NGN across all settings. We refer to Appendix J for additional ablation studies against other
optimizers and results when training NLP models.

Vision Experiments on ImageNet. Having observed promising results on workloads of small
and medium size, we switch to larger tasks and datasets. We first train a ResNet18 on ImageNet1k
[Deng et al., 2009]. This represents the first task in which we pair our proposed algorithms with
a learning rate schedule. As illustrated in Figure 3 and Table 4, NGN-M achieves the highest
validation accuracy, while exhibiting higher robustness across larger step-sizes, improving over both
NGN and Momo. Among adaptive methods, NGN-MDv1 compares favorably against Adam and
MomoAdam, while once again achieving higher performance on a wider range of learning rates
(Table 5). Appendix J.4 reports additional ablations on ImageNet32 and train loss stability results.

Finally, we test the effectiveness of the proposed algorithms on vision transformers [Dosovitskiy
et al., 2021]. These models are trained for a longer horizon compared to convolutional architectures,
are notoriously sensitive to initial learning rate, and require adaptive step-sizes. We follow the
protocol of Schaipp et al. [2024], which includes cosine annealing, but without any weight decay
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regularization. As highlighted in Figure 3 and Table 5, NGN-MDv1 achieves the highest validation
accuracy across adaptive methods. Moreover, at a larger learning rate, Adam diverges, whereas
both MomoAdam NGN-MDv1 maintain more stable training dynamics.

Language Modeling. Pre-training Large Language Models represents a challenging optimization
task. To achieve competitive performance, optimizers with adaptive step-size are needed, and
preventing instabilities in low-precision training often requires careful hyperparameter tuning.

To evaluate the capability of NGN-MDv1 in this setting, we train decoder-only transformers
[Radford et al., 2019] with 70M, 160M, 410M, and 1B parameters around Chinchilla optimum
[Hoffmann et al., 2022] on SlimPajama-627B [Soboleva et al., 2023]. For each model, we retune the
learning rate, using 3 seeds for the first three models and 1 seed for the 1B. Appendix J provides
additional details about the training and tokenization pipeline.

Figure 4 and Table 5 report the final validation perplexity when training language models
varying a model size. We note that NGN-MDv1 matches the performance of Adam across all model
sizes. However, NGN-MDv1 achieves competitive performance even for a step-size hyperparameter
c = 10−2 while Adam’s performance drops significantly. This phenomenon is consistent across all
scales we tested, suggesting that the optimal learning rate of NGN-MDv1 is shifted towards larger
values, but also that the algorithm is less sensitive to such a hyperparameter. We additionally
discuss how to introduce weight decay in NGN-MDv1 and report additional ablations on its role in
this training task in Appendix H.

Effective Step-size of NGN-M and NGN-MDv1. The first observation from the results in Fig-
ure 5 is that the effective step-size of NGN-M and NGN-MDv1 is always adaptive: if the step-size
hyperparameter c is large enough the effective step-size sharply increases in the beginning up to a
peak, and then it gradually decreases till the end of the training. From this perspective, NGN-M
and NGN-MDv1 step-sizes are close to annealing step-size schedulers widely used in practice. In con-
trast, the effective step-size of Momo and Momo-Adam is not adaptive for sufficiently large step-size
hyperparameter α0 during the initial part or all of the training. In other words, these algorithms
reduce to SGDM and Adam, which is one of the reasons for the reduced resilience property of Momo
and Momo-Adam in comparison with NGN-M and NGN-MDv1. The effective step-sizes in training
Resnet20 are provided Figures J.9 and J.10 while comparison against Adam’s effective step-size is
reported in Figures J.6 and J.7. Moreover, we report the update magnitudes when training a 160M
language model in Figures J.11 to J.13. All aforementioned results demonstrate that the NGN
step-size is more conservative: it decreases the effective step-size when necessary to stabilize the
training, even for large values of the step-size hyperparameter c. This feature is a key factor behind
robustness of NGN-M and NGN-MDv1 in practice.

6 Conclusion and Future Work

This work introduced several novel adaptations of the NGN step-size method, incorporating support
for momentum and/or diagonal step-size. We provided a theoretical analysis of the convergence rates
for these algorithms and conducted an extensive empirical evaluation of their performance. The
experimental results show that combining momentum with the NGN step-size yields high robustness
to step-size hyperparameter choices and performs competitively with state-of-the-art algorithms
across various settings.

Given the significant complexity of the task, we defer the theoretical explanation of the step-size
resilience properties of NGN-M for large values of β and analysis in the non-convex setting to future
work. Furthermore, while the two proposed methods for incorporating weight decay into NGN-MDv1
outperform AdamW in training language models, they still exhibit some sensitivity to the step-size
hyperparameter. This may, in part, be due to the limited understanding of the expected effects
of the weight decay technique, a topic that requires further investigation. We acknowledge that
computing NGN step-size at a large scale may cause runtime overhead, and discuss this limitation
in Appendix G.2 by providing train and optimization times. We also recognize that integrating
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NGN-MDv1 with advanced parallelism schemes—such as Tensor Parallelism [Shoeybi et al., 2019] or
ZeRO-2 [Rajbhandari et al., 2020]—introduces additional compute and communication overhead,
and will require further adaptation of the algorithm. Nevertheless, our results provide valuable
guidance for developing inherently more stable optimizers. As a next step, it would be fascinating
to investigate whether the resilience of emerging methods like Muon [Jordan et al., 2024] can be
further improved by incorporating the NGN step-size.
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A Equivalent Formulations of NGN-M

We remind that the iterates of NGN-M are the following

xk+1 = xk − (1− β)γk∇fSk
(xk) + β(xk − xk−1)

= xk − (1− β)
c

1 + c
2fSk

(xk)
∥∇fSk

(xk)∥2
∇fSk

(xk) + β(xk − xk−1).
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We can rewrite the update rule using Iterative-Moving Average (IMA) approach presented in Propo-
sition 1.6, Sebbouh et al. [2021].

Lemma 1 (Proposition C.8 [Oikonomou and Loizou, 2024], Lemma 7.3 in [Garrigos and Gower,
2023]). The iterates {xk} generated by NGN-M are equivalent to the sequence {xk} generated by
IMA update

zk+1 = zk − γk∇fSk
(xk), xk+1 =

λ

1 + λ
xk +

1

1 + λ
zk+1, (5)

where
β =

λ

1 + λ
, zk+1 = xk+1 + λ(xk+1 − xk), and x−1 = z0 = x0. (6)

Proof. Let the sequences {xk} and {zk} be defined according to Equation (5). Let β be defined as
λ

1+λ . Then we have

xk+1 =
λ

1 + λ
xk +

1

1 + λ
zk+1

=
λ

1 + λ
xk +

1

1 + λ
(zk − γk∇fSk

(xk))

=
λ

1 + λ
xk +

1

1 + λ
((1 + λ)xk − λxk−1 − γk∇fSk

(xk))

= xk − 1

1 + λ
γk∇fSk

(xk) +
λ

1 + λ
(xk − xk−1).

It remains to use equation 6 as we have β = λ
1+λ and 1− β = 1− λ

1+λ = 1
1+λ .

B Technical Lemmas and Definitions

Definition 1. We say that the function ϕ admits L-smooth with parameters L := (L1, . . . , Ld), Lj ≥
0 ∀j ∈ [d], if the following inequality holds for all x, h ∈ Rd

ϕ (x+ h) ≤ ϕ(x) + ⟨∇ϕ(x), h⟩+ 1
2h

⊤Lh. (7)

Remark 1. If we set for all j ∈ [d] Lj := L then Definition 1 reduces to standard L-smoothness.

This assumption is typically used in the context of coordinate adaptive algorithms such as
SignSGD [Bernstein et al., 2018, Safaryan and Richtárik, 2021].

Definition 2. The function ϕ : Rd → R satisfies PŁ-condition with constant µ > 0 if for all x, y ∈ Rd

we have
∥∇f(x)∥2 ≥ 2µ(f(x)− f∗). (8)

Assumption 3. We assume that the coordinate-wise variance of the stochastic estimator is bounded,
i.e. for all x ∈ Rd and j ∈ [d] we have

ES

[
|(∇jfS(x)−∇jf(x)|2

]
≤ σ2

j . (9)

Lemma 2 (Lemma 4.9 from [Orvieto and Xiao, 2024]). Let each fi be L-smooth for all i, then the
step-size of NGN satisfies

γk ∈
[

c

1 + cL
, c

]
. (10)

Lemma 3 (Lemma 4.2 from [Orvieto and Xiao, 2024]). Let each fi be L-smooth for all i, then the
iterates of NGN satisfy

γ2k∥∇fSk
(xk)∥2 ≤ 4cL

1 + 2cL
γk(fSk

(xk)− f∗
Sk
) +

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
Sk
. (11)
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Lemma 4 (Gradient Upper Bound). Let ϕ : Rd → R satisfy Definition 1. Then, for all x ∈ Rd and
all j ∈ [d] we have

2Lj(f(x)− f∗) ≥ (∇jf(x))
2. (12)

Proof. From Definition 1 we have

f∗ = min
x∈Rd

f(x) ≤ min
hj∈R

f(x+ hjej) ≤ f(x) + min
hj∈R

[
∇jf(x)hj +

Lj

2
h2j

]
.

Now we can explicitly compute the minimum in the right-hand side. The optimal value is achieved
at

h∗j := − 1

Lj
∇jf(x),

therefore,

f∗ ≤ f(x) +∇jf(x)h
∗
j +

Lj

2
(h∗j )

2

= f(x)− 1

Lj
(∇jf(x))

2 +
1

2Lj
(∇jf(x))

2

= f(x)− 1

2Lj
(∇jf(x))

2,

which equivalent to the statement of the lemma.

C Convergence of NGN-D

First, we provide NGN-D pseudocode and the main convergence results.

Algorithm 3 NGN-D

1: Input: x0 ∈ Rd, step-size parameter c > 0
2: for k = 0, 1, . . . ,K − 1 do
3: Sample a batch Sk ⊆ [n] and compute fSk

and ∇fSk
(xk)

4: Compute γ
(j)
k = c

1+ c

2fSk
(xk)

(∇jfSk
(xk))2

5: Update
xk+1
(j) = xk(j) − γ

(j)
k ∇jfSk

(xk)

6: end for

Theorem 2. Let each fi satisfies Definition 1. Assume that Assumption 3 holds. Then the iterates
of NGN-D (Alg. 3) with step-size parameters {cj}dj=1 such that cj ≤ 1/2Lj satisfy

min
0≤k<K

E
[
∥∇f(xk)∥2

]
≤ 12(f(x0)− f∗)

cminK
+

1

cmin

d∑
j=1

18Ljc
2
jσ

2
j , (13)

where cmin := minj∈[d] cj . Moreover, if cj = O(ε2) for all j ∈ [d] then after K = O(ε−4) we obtain
min

0≤k<K
E
[
∥∇f(xk)∥2

]
≤ O(ε2).

NGN-D converges with classic rate O(1/
√
K) similar to Adagrad [Ward et al., 2020]. We highlight

that, to the best of our knowledge, NGN-D is the first algorithm that uses diagonal Polyak-type
stepsize and converges under standard smoothness and bounded variance assumptions without re-
quirements of bounded gradients and interpolation.
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Theorem 3. Let f satisfies PŁ-condition and each fi satisfies Definition 1. Assume that Assump-
tion 3 holds. Then the iterates of NGN-D (Alg. 3) with step-size parameters {cj}dj=1 such that
cj ≤ min{1/2Lj, 6/µ} satisfy

E
[
f(xK)− f∗] ≤ (1− µcmin/6)K(f(x0)− f∗) +

9

µcmin

d∑
j=1

Ljc
2
jσ

2
j , (14)

where cmin := minj∈[d] cj . Moreover, if cj = O(ε) for all j ∈ [d] then after K = max{O(ε−1),O(1)} log ε−1

iterations we obtain E
[
f(xK)− f∗] ≤ O(ε).

To the best of our knowledge, this is the first result of the convergence of the Polyak-like step-size
algorithm under the PŁ-condition. The convergence guarantees are similar to that of SGD [Garrigos
and Gower, 2023].

Now we are ready to derive the step-size bounds.

Lemma 5 (Step-size Bounds). Let fSk
(x) : Rd → R be a stochastic loss of batch Sk at iteration k.

Let fSk
(x) satisfy Definition equation 1. Consider γkj as in NGN-D (Algorithm 3), then we have

γkj ∈
[

cj
1 + cjLj

, cj

]
. (15)

Proof. From Lemma 4 we have 2Lj(fSk
(xk) − f∗

Sk
) ≥ (∇jfSk

(xk))2. Since we assume that each
f∗
Sk

≥ 0, then 2LjfSk
(xk) ≥ (∇jfSk

(xk))2, or equivalently,

0 ≤ (∇jfSk
(x))2

2fSk
(x)

≤ Lj .

Therefore, for all j ∈ [d] we have

γkj =
cj

1 +
cj

2fSk
(xk)

(∇jfSk
(xk))2

≤ cj
1

= cj ,

and
γkj =

cj

1 +
cj

2fSk
(xk)

(∇jfSk
(xk))2

≥ cj
1 + cjLj

,

that concludes the proof.

Lemma 6 (Fundamental Equality). Consider γkj as in NGN-D (Algorithm 3). Then the following
equality holds

γkj (∇jfSk
(xk))2 = 2

(
cj − γkj

cj

)
fSk

(xk). (16)

Proof. From NGN-D (Algorithm 3) we have(
1 +

cj
2fSk

(xk)
(∇jfSk

(xk))2
)
γkj = cj ,

which one can rewrite as
cj

2fSk
(xk)

(∇jfSk
(xk))2γkj = cj − γkj .

It is left to divide both sides by 2fSk
(xk)

cj
.
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C.1 Convergence in General Non-convex Setting

Theorem 2. Let each fi satisfies Definition 1. Assume that Assumption 3 holds. Then the iterates
of NGN-D (Alg. 3) with step-size parameters {cj}dj=1 such that cj ≤ 1/2Lj satisfy

min
0≤k<K

E
[
∥∇f(xk)∥2

]
≤ 12(f(x0)− f∗)

cminK
+

1

cmin

d∑
j=1

18Ljc
2
jσ

2
j , (13)

where cmin := minj∈[d] cj . Moreover, if cj = O(ε2) for all j ∈ [d] then after K = O(ε−4) we obtain
min

0≤k<K
E
[
∥∇f(xk)∥2

]
≤ O(ε2).

Proof. First, we write separable Definition 1

f(xk+1)− f(xk) = f

xk −
d∑

j=1

γkj∇jfSk
(xk)ej

− f(xk)

≤ −
d∑

j=1

∇jf(x
k) · γkj∇jfSk

(xk) +
1

2

d∑
j=1

Lj(γ
k
j∇jfSk

(xk))2

≤ −
d∑

j=1

∇jf(x
k) · γkj∇jfSk

(xk) +
1

2

d∑
j=1

Ljσ
2
j (∇jfSk

(xk))2. (17)

Note that both γkj and ∇jfSk
(xk) depend on the realization Sk, thus we can not directly apply

conditional expectation with respect to xk, as in this case we would have to analyze the product
γkj∇jfSk

(xk). Given bounds of the step-size γkj from Lemma 5, we can write the step-size as follows

γkj =
cj

1 + cjLj
+ νkj

c2jLj

1 + cjLj
,

where νkj ∈ [0, 1] is a random variable. Varying the value of νkj from 0 to 1 we cover the whole range
of γkj . Thus, we continue as follows

−γkj∇jf(x
k)∇jfSk

(xk)

= − cj
1 + cjLj

∇jf(x
k)∇jfSk

(xk)−
c2jLj

1 + cjLj
νkj ∇jf(x

k)∇jfSk
(xk)

≤ − cj
1 + cjLj

∇jf(x
k)∇jfSk

(xk) +
c2jLj

1 + cjLj
|νkj | · |∇jf(x

k)∇jfSk
(xk)|

≤ − cj
1 + cjLj

∇jf(x
k)∇jfSk

(xk) +
c2jLj

1 + cjLj
· |∇jf(x

k)∇jfSk
(xk)|.

Now we use the inequality |ab| ≤ 1
2a

2 + 1
2b

2 + 1
2 |a− b|2, and derive

2Ek

[
|∇jf(x

k)∇jfSk
(xk)|

]
≤ |∇jf(x

k)|2 + Ek

[
|∇jfSk

(xk)|2
]
+ Ek

[
|∇jf(x

k)−∇jfSk
(xk)|2

]
≤ 2|∇jf(x

k)|2 + 2Ek

[
|∇jf(x

k)−∇jfSk
(xk)|2

]
≤ 2|∇jf(x

k)|2 + 2σ2
j .

Therefore, we get

−Ek

[
γkj∇jf(x

k)∇jfSk
(xk)

]
≤ − cj

1 + cjLj
|∇jf(x

k)|2 +
c2jLj

1 + cjLj

(
|∇jf(x

k)|2 + σ2
j

)
= −cj

(
1− cjLj

1 + cjLj

)
|∇jf(x

k)|2 +
c2jLj

1 + cjLj
σ2
j . (18)
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We plug in equation 18 into equation 17 and get

Ek

[
f(xk+1)

]
− f(xk) ≤ −

d∑
j=1

(
Ek

[
γkj∇jf(x

k)∇jfSk
(xk)

]
+

Ljc
2
j

2
Ek

[
|∇jfSk

(xk)|2
])

≤
d∑

j=1

([
−cj

(
1− cjLj

1 + cjLj

)
+

Ljc
2
j

2

]
|∇jf(x

k)|2

+

[
c2jLj

1 + cjLj
+

Ljc
2
j

2

]
σ2
j

)
.

If cj ≤ 1
2Lj

, we get

Ek

[
f(xk+1)

]
− f(xk) ≤

d∑
j=1

(
− cj
12

|∇jf(x
k)|2 +

3Ljc
2
j

2
σ2
j

)
.

We continue as follows

Ek

[
f(xk+1)

]
− f(xk) ≤ −cmin

12
∥∇f(xk)∥2 +

d∑
j=1

3Ljc
2
j

2
σ2
j . (19)

Taking full expectation and unrolling the recursion above for all iterations {0, . . . ,K − 1}. Thus,
we obtain

min
0≤k<K

E
[
∥∇f(xk)∥2

]
≤ 1

K

K−1∑
k=0

E
[
∥∇f(xk)∥2

]
≤ 12

cminK
(f(x0)− f∗) +

18

cmin

d∑
j=1

Ljc
2
jσ

2
j .

If we choose each cj =
c0,j√
K

such that c0,j ≤ 1
2Lj

we ensure that cj ≤ 1
2Lj

as well. Plugging this
step-size into the bound we get

min
0≤k<K

E
[
∥∇f(xk)∥2

]
≤ 12

c0,min√
K

K
(f(x0)− f∗) +

18
c0,min√

K

d∑
j=1

Ljσ
2
j

c20,j
K

≤ 12

c0,min

√
K

(f(x0)− f∗) +
18

c0,min

√
K

d∑
j=1

Ljσ
2
j c

2
0,j ,

where c0,min := min
j∈[d]

c0,j . If we choose K = O(ε−4) we get that

min
0≤k<K

E
[
∥∇f(xk)∥2

]
= O(1/

√
K) = O(ε2).

C.2 Convergence under PŁ-condition

Theorem 3. Let f satisfies PŁ-condition and each fi satisfies Definition 1. Assume that Assump-
tion 3 holds. Then the iterates of NGN-D (Alg. 3) with step-size parameters {cj}dj=1 such that
cj ≤ min{1/2Lj, 6/µ} satisfy

E
[
f(xK)− f∗] ≤ (1− µcmin/6)K(f(x0)− f∗) +

9

µcmin

d∑
j=1

Ljc
2
jσ

2
j , (14)

where cmin := minj∈[d] cj . Moreover, if cj = O(ε) for all j ∈ [d] then after K = max{O(ε−1),O(1)} log ε−1

iterations we obtain E
[
f(xK)− f∗] ≤ O(ε).
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Proof. We obtain equation 19 and use Definition 2

Ek

[
f(xk+1)

]
− f(xk) ≤ −cmin

12
∥∇f(xk)∥2 +

d∑
j=1

3Ljc
2
j

2
σ2
j

≤ −µcmin

6
(f(xk)− f∗) +

d∑
j=1

3Ljc
2
j

2
σ2
j

Subtracting f∗ from both sides of the inequality above and taking full expectation we obtain

E
[
f(xk+1)− f∗

]
≤ (1− µcmin/6)E

[
f(xk)− f∗

]
+

d∑
j=1

3Ljc
2
j

2
σ2
j .

Unrolling the recursion above for {0, . . . ,K − 1} iterations we derive

E
[
f(xK)− f∗] ≤ (1− µcmin/6)K(f(x0)− f∗) +

1

cmin

d∑
j=1

9Ljσ
2
j

µ︸ ︷︷ ︸
Aj

c2j .

Now we follow the proof of Lemma A.3 in Garrigos and Gower [2023]. Let us choose cj =

min{1/2Lj, ε/2dAj}. Together with the choice of K ≥ max
j∈[d]

max
{

1
ε
12Aj

µ ,
12Lj

µ

}
log 2(f(x0)−f∗)

ε we get

(1− µcmin/6)K(f(x0)− f∗) ≤ ε

2
.

Now we have two cases:

1. cmin does not depend on ε, then we have

1

cmin
Ajc

2
j ≤ O(ε2).

2. cmin does depend on ε, i.e. cmin = O(ε), then we have

1

cmin
Ajc

2
j ≤ O(ε).

Therefore, combining all together we get

E
[
f(xK)− f∗] ≤ O(ε)

after K ≥ max
j∈[d]

max
{

1
ε
12Aj

µ ,
12Lj

µ

}
log 2(f(x0)−f∗)

ε iterations.

D Convergence of NGN-M

Theorem 1. Let Assumptions 1, 2 hold. Let the step-size hyperparameter c > 0 and the momentum
parameter β = λ

1+λ be constants where λ ≤ min{cL, 0.5(1 + cL)−1(1 + 2cL)−1}. Then the iterates
of NGN-M (Alg. 1) satisfy

E
[
f(xK−1)− f(x∗)

]
≤ ∥x0−x∗∥2(1+2cL)2

cK + 8cL(1 + 2cL)2σ2
int + 2cLmax {2cL− 1, 0}σ2

pos,

where xK−1 is chosen uniformly at random from {x0, . . . , xK−1}. Moreover, if we set c = O(1/
√
K)

then we obtain E
[
f(xK−1)− f(x∗)

]
≤ O(1/

√
K).
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Remark 2. In fact, if λ ≤ 1
(1+cL)(1+2cL) , then it implies that λ ≤ 1

cL because 1
x > 1

(1+x)(1+2x) for
any x > 0.

Proof. To prove the convergence of NGN-M we consider IMA formulation Equation (5):

x−1 = z0 = x0, zk+1 = zk − γk∇fSk
(xk), xk+1 =

λ

1 + λ
xk +

1

1 + λ
zk+1,

where β = λ
1+λ , z

k+1 = xk+1 + λ(xk+1 − xk).
At iteration k = 0 we have

z1 = z0 − γ0∇fS0(x
0) = x0 − γ0∇fS0(x

0).

Therefore, we get

∥z1 − x∗∥2 = ∥z0 − x∗∥2 − 2γ0⟨∇fS0(x
0), z0 − x∗⟩+ γ20∥∇fS0(x

0)∥2
Lem. 3
≤ ∥z0 − x∗∥2 − 2γ0⟨∇fS0(x

0), x0 − x∗⟩+ 4cL

1 + 2cL
γ0(fS0(x

0)− f∗
S0
)

+
2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
S0
. (20)

Let γ0 = ρ+ γ̃0 where ρ = c
(1+cL)(1+2cL) . Then we have

γ̃0 = γ0 − ρ

Lem. 2
≤ c− c

(1 + cL)(1 + 2cL)

= c
1 + 3cL+ 2c2L2 − 1

(1 + cL)(1 + 2cL)

= c2L
3 + 3cL

(1 + cL)(1 + 2cL)

=
3c2L

1 + 2cL
.

Using the above we continue from (20)

∥z1 − x∗∥2
conv.
≤ ∥z0 − x∗∥2 − 2γ0(fS0(x

0)− fS0(x
∗)) +

4cL

1 + 2cL
γ0(fS0(x

0)− f∗
S0
)

+
2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
S0

≤ ∥z0 − x∗∥2 − 2ρ(fS0(x
0)− fS0(x

∗))− 2γ̃0(fS0(x
0)− f∗

S0
) + 2γ̃0(fS0(x

∗)− f∗
S0
)

+
4cL

1 + 2cL
γ0(fS0(x

0)− f∗
S0
) +

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
S0

= ∥z0 − x∗∥2 − 2ρ(fS0(x
0)− fS0(x

∗))− 2

(
γ0 − ρ− 2cL

1 + 2cL
γ0

)
(fS0(x

0)− f∗
S0
)

+ 2γ̃0(fS0(x
∗)− f∗

S0
) +

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
S0
. (21)

Here we have

γ0 − ρ− 2cL

1 + 2cL
γ0 =

1

1 + 2cL
γ0 − ρ

=
1

1 + 2cL
γ0 −

c

(1 + cL)(1 + 2cL)
Lem.2
≥ 1

1 + 2cL

c

1 + cL
− c

(1 + cL)(1 + 2cL)

= 0,
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γ̃0 ≤ 3c2L
1+2cL , and fS0(x

0)− f∗
S0

≥ 0. Hence, we get

∥z1 − x∗∥2 ≤ ∥z0 − x∗∥2 − 2ρ(fS0(x
0)− fS0(x

∗)) +
6c2L

1 + 2cL
(fS0(x

∗)− f∗
S0
)

+
2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
S0
.

Rearranging terms and taking expectation we get

2ρE
[
f(x0)− f(x∗)

]
≤ E

[
∥z1 − x∗∥2

]
− ∥z0 − x∗∥2 + 6c2L

1 + 2cL
σ2
int

+
2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos. (22)

Next, for k > 0 we can use the relation zk = xk + λ(xk − xk−1). We expand ∥zk+1 − x∗∥2

∥zk+1 − x∗∥2 = ∥zk − x∗∥2 − 2γk⟨∇fSk
(xk), zk − x∗⟩+ γ2k∥∇fSk

(xk)∥2
Lem. 1
= ∥zk − x∗∥2 − 2γk⟨∇fSk

(xk), xk − x∗⟩ − 2γkλ⟨∇fSk
(xk), xk − xk−1⟩

+ γ2k∥∇fSk
(xk)∥2

conv.
≤ ∥zk − x∗∥2 − 2γk(fSk

(xk)− fSk
(x∗))− 2γkλ(fSk

(xk)− fSk
(xk−1))

+ γ2k∥∇fSk
(xk)∥2

Lem. 3
≤ ∥zk − x∗∥2 − 2γk(fSk

(xk)− fSk
(x∗))− 2γkλ(fSk

(xk)− fSk
(xk−1))

+
4cL

1 + 2cL
γk(fSk

(xk)− f∗
Sk
) +

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
Sk
.

Let γk = ρ + γ̃k, where ρ, γ̃k ≥ 0, and ρ is a constant step-size independent of Sk which will be
defined later. Therefore, we have

∥zk+1 − x∗∥2 ≤ ∥zk − x∗∥2 − 2ρ(fSk
(xk)− fSk

(x∗))− 2γ̃k(fSk
(xk)− fSk

(x∗))

− 2γkλk(fSk
(xk)− f∗

Sk
) + 2γkλ(fSk

(xk−1)− f∗
Sk
)

+
4cL

1 + 2cL
γk(fSk

(xk)− f∗
Sk
) +

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
Sk

= ∥zk − x∗∥2 − 2ρ(fSk
(xk)− fSk

(x∗))− 2γ̃k(fSk
(xk)− f∗

Sk
) + 2γ̃k(fSk

(x∗)− f∗
Sk
)

− 2γkλ(fSk
(xk)− f∗

Sk
) + 2γkλ(fSk

(xk−1)− f∗
Sk
)

+
4cL

1 + 2cL
γk(fSk

(xk)− f∗
Sk
) +

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
Sk

= ∥zk − x∗∥2 − 2ρ(fSk
(xk)− fSk

(x∗))− 2

(
γ̃k + γkλ− 2cL

1 + 2cL
γk

)
(fSk

(xk)− f∗
Sk
)

+ 2γ̃k(fSk
(x∗)− f∗

Sk
) + 2γkλ(fSk

(xk−1)− f∗
Sk
)

+
2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
Sk
. (23)

We need to find ρ such that

γ̃k + γkλ− 2cL

1 + 2cL
γk ≥ 0

Since γ̃k = γk − ρ, then we have

γk − ρ+ γkλ− 2cL

1 + 2cL
γk ≥ 0

⇔ γk

(
1 + λ− 2cL

1 + 2cL

)
≥ ρ.
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The inequality above is satisfied if it is satisfied for the lower bound on γk (which is c/1+cL), i.e.

c

1 + cL

(
1

1 + 2cL
+ λ

)
≥ ρ.

We can take ρ = c
(1+cL)(1+2cL) since λ ≥ 0.

γ̃k = γk − ρ

≤ c− c

(1 + cL)(1 + 2cL)

= c
1 + 3cL+ 2c2L2 − 1

(1 + cL)(1 + 2cL)

≤ c2L
3 + 3cL

(1 + cL)(1 + 2cL)

=
3c2L

1 + 2cL
.

Using the above, we get from (23)

∥zk+1 − x∗∥2 ≤ ∥zk − x∗∥2 − 2ρ(fSk
(xk)− fSk

(x∗)) + 2cλ(fSk
(xk−1)− fSk

(x∗))

+ 2cλ(fSk
(x∗)− f∗

Sk
) +

6c2L

1 + 2cL
(fSk

(x∗)− f∗
Sk
)

+
2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
f∗
Sk
.

Taking expectations we get

E
[
∥zk+1 − x∗∥2

]
≤ E

[
∥zk − x∗∥2

]
− 2ρE

[
f(xk)− f(x∗)

]
+ 2cλE

[
f(xk−1)− f(x∗)

]
+

(
2cλ+

6c2L

1 + 2cL

)
σ2
int +

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos. (24)

Rearranging terms we get

2ρE
[
f(xk)− f(x∗)

]
− 2cλE

[
f(xk−1)− f(x∗)

]
≤ E

[
∥zk − x∗∥2

]
− E

[
∥zk+1 − x∗∥2

]
+

(
2cλ+

6c2L

1 + 2cL

)
σ2
int

+
2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos. (25)

Combining Equation (22) and Equation (25) for iterations {1, . . . ,K − 1} we get

2ρE
[
f(x0)− f(x∗)

]
+ 2ρ

K−1∑
k=1

E
[
f(xk)− f(x∗)

]
− 2cλ

K−1∑
k=1

E
[
f(xk−1)− f(x∗)

]
= 2ρ

K−1∑
k=0

E
[
f(xk)− f(x∗)

]
− 2cλ

K−2∑
k=0

E
[
f(xk)− f(x∗)

]
≤ (2ρ− 2cλ)

K−1∑
k=0

E
[
f(xk)− f(x∗)

]
≤ ∥z0 − x∗∥2 + 6c2L

1 + 2cL
σ2
int +

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos

+

(
2cλ+

6c2L

1 + 2cL

)
(K − 1)σ2

int + (K − 1) · 2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos

≤ ∥z0 − x∗∥2 +
(
2cλ+

6c2L

1 + 2cL

)
Kσ2

int +K · 2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos. (26)
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We need to ensure that ρ− cλ > 0 which is satisfied for λ such that

ρ

2
=

c

2(1 + cL)(1 + 2cL)
> cλ

⇔1 > 2λ(1 + cL)(1 + 2cL).

Note that we also assume that λ ≤ cL. Therefore, from (26) we get

1

K

K−1∑
k=0

E
[
f(xk)− f(x∗)

]
≤ ∥z0 − x∗∥2

2(ρ− cλ)K
+

1

2(ρ− cλ)

(
2cλ+

6c2L

1 + 2cL

)
σ2
int

+
1

2(ρ− cλ)

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos

≤ ∥z0 − x∗∥2

2(ρ− cλ)K
+

8c2L

2(ρ− cλ)
σ2
int

+
1

2(ρ− cλ)

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos. (27)

Since ρ− cλ ≥ ρ
2 and setting xk be uniformly at random chosen from {x0, . . . , xK−1} we get

E
[
f(xk)− f(x∗)

]
≤ ∥z0 − x∗∥2

ρK
+

8c2L

ρ
σ2
int +

1

ρ

2c2L

1 + cL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos, (28)

where we use the convexity of f and Jensen’s inequality. Plugging the value of ρ = c
(1+cL)(1+2cL)

inside we get

E
[
f(xk)− f(x∗)

]
≤ ∥z0 − x∗∥2

cK
(1 + cL)(1 + 2cL) + 8cL(1 + cL)(1 + 2cL)σ2

int

+ 2cLmax {2cL− 1, 0}σ2
pos. (29)

Choosing c = O(1/
√
K) we get

E
[
f(xk)− f(x∗)

]
≤ O

(
∥z0 − x∗∥2√

K
+

σ2
int√
K

+
σ2
pos√
K

max {2cL− 1, 0}

)
. (30)

Therefore, if K ≥ O(ε−2) then E
[
f(xk)− f(x∗)

]
≤ O(ε). It remains to notice that z0 = x0 to

derive the statement of the theorem.

E Convergence of NGN-M with Decaying Step-size

Lemma 7. We have

K−1∑
k=0

1

k + 1
≤ log(K + 2),

K−1∑
k=0

1√
k + 1

≥ 4

5

√
K + 1. (31)

Proof. We refer to Lemma A.8 from Garrigos and Gower [2023].

To prove the convergence of NGN-M with decaying ck we consider IMA formulation (see Section
A in the paper):

x−1 = z0 = x0, zk+1 = zk − γk∇fSk
(xk), γk =

ck
1 + ck

2fSk
(xk)

∥∇fSk
(xk)∥2

xk+1 =
λ

1 + λ
xk +

1

1 + λ
zk+1,

where ck = c0√
k+1

, λk = Lck, λ0 = 0.
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Theorem 4. Assume that each fi is convex and L-smooth, and that Assumption 3.2 holds. Let the
step-size hyperparameter is set ck = c0√

k
, momentum parameter λk ≤ min{ckL, 0.5(1 + ckL)

−1(1 +

2ckL)
−1}. Then the iterates of NGN-M satisfy

E
[
f(x̂K−1)− f(x∗)

]
≤ 5(1 + c0L)(1 + 2c0L)∥x0 − x∗∥2

4c0
√
K

+ 10Lc0(1 + c0L)(1 + 2c0L)σ
2
int

log (K + 2)√
K

+ 5c0L(1 + c0L)
log(K + 2)

2
√
K

max {2c0L− 1, 0}σ2
pos, (32)

where x̂K−1 =
∑K−1

k=0
ρk∑K−1

k=0 ρk
xk, ρk = ck

(1+ckL)(1+2ckL)
.

Proof. At iteration k = 0 we have

z1 = z0 − γ0∇fS0(x
0) = x0 − γ0∇fS0(x

0).

Therefore, we get

∥z1 − x∗∥2 = ∥z0 − x∗∥2 − 2γ0⟨∇fS0(x
0), z0 − x∗⟩+ γ20∥∇fS0(x

0)∥2
Lem. B.6

≤ ∥z0 − x∗∥2 − 2γ0⟨∇fS0(x
0), x0 − x∗⟩+ 4c0L

1 + 2c0L
γ0(fS0(x

0)− f∗
S0
)

+
2c20L

1 + c0L
max

{
2c0L− 1

2c0L+ 1
, 0

}
f∗
S0
. (33)

Let γ0 = ρ0 + γ̃0 where ρ0 =
c0

(1+c0L)(1+2c0L)
. Then we have

γ̃0 = γ0 − ρ0
Lem. B.5

≤ c0 −
c0

(1 + c0L)(1 + 2c0L)

= c0
1 + 3c0L+ 2c20L

2 − 1

(1 + c0L)(1 + 2c0L)

= c20L
3 + 3c0L

(1 + c0L)(1 + 2c0L)

=
3c20L

1 + 2c0L
.

Using the above we continue from (33)

∥z1 − x∗∥2
conv.
≤ ∥z0 − x∗∥2 − 2γ0(fS0(x

0)− fS0(x
∗)) +

4c0L

1 + 2c0L
γ0(fS0(x

0)− f∗
S0
)

+
2c20L

1 + c0L
max

{
2c0L− 1

2c0L+ 1
, 0

}
f∗
S0

≤ ∥z0 − x∗∥2 − 2ρ0(fS0(x
0)− fS0(x

∗))− 2γ̃0(fS0(x
0)− f∗

S0
) + 2γ̃0(fS0(x

∗)− f∗
S0
)

+
4c0L

1 + 2c0L
γ0(fS0(x

0)− f∗
S0
) +

2c20L

1 + c0L
max

{
2c0L− 1

2c0L+ 1
, 0

}
f∗
S0

= ∥z0 − x∗∥2 − 2ρ0(fS0(x
0)− fS0(x

∗))− 2

(
γ0 − ρ0 −

2c0L

1 + 2c0L
γ0

)
(fS0(x

0)− f∗
S0
)

+ 2γ̃0(fS0(x
∗)− f∗

S0
) +

2c20L

1 + c0L
max

{
2c0L− 1

2c0L+ 1
, 0

}
f∗
S0
. (34)

Here we have

γ0 − ρ0 −
2c0L

1 + 2c0L
γ0 =

1

1 + 2c0L
γ0 − ρ0

=
1

1 + 2cL
γ0 −

c0
(1 + c0L)(1 + 2c0L)

Lem.B.5
≥ 1

1 + 2c0L

c0
1 + c0L

− c0
(1 + c0L)(1 + 2cL)

= 0,
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γ̃0 ≤
3c20L

1+2c0L
, and fS0(x

0)− f∗
S0

≥ 0. Hence, we get

∥z1 − x∗∥2 ≤ ∥z0 − x∗∥2 − 2ρ0(fS0(x
0)− fS0(x

∗)) +
6c20L

1 + 2c0L
(fS0(x

∗)− f∗
S0
)

+
2c20L

1 + c0L
max

{
2c0L− 1

2c0L+ 1
, 0

}
f∗
S0
.

Rearranging terms and taking the expectation we get

2ρ0E
[
f(x0)− f(x∗)

]
≤ E

[
∥z1 − x∗∥2

]
− ∥z0 − x∗∥2 + 6c20L

1 + 2c0L
σ2
int

+
2c20L

1 + c0L
max

{
2c0L− 1

2c0L+ 1
, 0

}
σ2
pos. (35)

Next, for k > 0 we can use the relation zk = xk + λk(x
k − xk−1). We expand ∥zk+1 − x∗∥2

∥zk+1 − x∗∥2 = ∥zk − x∗∥2 − 2γk⟨∇fSk
(xk), zk − x∗⟩+ γ2k∥∇fSk

(xk)∥2

= ∥zk − x∗∥2 − 2γk⟨∇fSk
(xk), xk − x∗⟩ − 2γkλk⟨∇fSk

(xk), xk − xk−1⟩
+ γ2k∥∇fSk

(xk)∥2
conv.
≤ ∥zk − x∗∥2 − 2γk(fSk

(xk)− fSk
(x∗))− 2γkλ(fSk

(xk)− fSk
(xk−1))

+ γ2k∥∇fSk
(xk)∥2

Lem. B.6
≤ ∥zk − x∗∥2 − 2γk(fSk

(xk)− fSk
(x∗))− 2γkλk(fSk

(xk)− fSk
(xk−1))

+
4ckL

1 + 2ckL
γk(fSk

(xk)− f∗
Sk
) +

2c2kL

1 + ckL
max

{
2ckL− 1

2ckL+ 1
, 0

}
f∗
Sk
.

Let γk = ρk + γ̃k, where ρ, γ̃k ≥ 0, and ρ is a constant step-size independent of Sk which will be
defined later. Therefore, we have

∥zk+1 − x∗∥2 ≤ ∥zk − x∗∥2 − 2ρk(fSk
(xk)− fSk

(x∗))− 2γ̃k(fSk
(xk)− fSk

(x∗))

− 2γkλk(fSk
(xk)− f∗

Sk
) + 2γkλ(fSk

(xk−1)− f∗
Sk
)

+
4ckL

1 + 2ckL
γk(fSk

(xk)− f∗
Sk
) +

2c2kL

1 + ckL
max

{
2ckL− 1

2ckL+ 1
, 0

}
f∗
Sk

= ∥zk − x∗∥2 − 2ρ(fSk
(xk)− fSk

(x∗))− 2γ̃k(fSk
(xk)− f∗

Sk
) + 2γ̃k(fSk

(x∗)− f∗
Sk
)

− 2γkλ(fSk
(xk)− f∗

Sk
) + 2γkλ(fSk

(xk−1)− f∗
Sk
)

+
4ckL

1 + 2ckL
γk(fSk

(xk)− f∗
Sk
) +

2c2kL

1 + ckL
max

{
2ckL− 1

2ckL+ 1
, 0

}
f∗
Sk

= ∥zk − x∗∥2 − 2ρ(fSk
(xk)− fSk

(x∗))− 2

(
γ̃k + γkλ− 2ckL

1 + 2ckL
γk

)
(fSk

(xk)− f∗
Sk
)

+ 2γ̃k(fSk
(x∗)− f∗

Sk
) + 2γkλ(fSk

(xk−1)− f∗
Sk
)

+
2c2kL

1 + ckL
max

{
2ckL− 1

2ckL+ 1
, 0

}
f∗
Sk
. (36)

We need to find ρk such that

γ̃k + γkλ− 2ckL

1 + 2ckL
γk ≥ 0

Since γ̃k = γk − ρk, then we have

γk − ρk + γkλk −
2ckL

1 + 2ckL
γk ≥ 0

⇔ γk

(
1 + λk −

2ckL

1 + 2ckL

)
≥ ρk.
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The inequality above is satisfied if it is satisfied for the lower bound on γk (which is c/1+cL), i.e.

ck
1 + ckL

(
1

1 + 2ckL
+ λ

)
≥ ρ.

We can take ρk = ck
(1+ckL)(1+2ckL)

since λ ≥ 0.

γ̃k = γk − ρk

≤ ck −
ck

(1 + ckL)(1 + 2ckL)

= ck
1 + 3ckL+ 2c2kL

2 − 1

(1 + ckL)(1 + 2ckL)

≤ c2kL
3 + 3ckL

(1 + ckL)(1 + 2ckL)

=
3c2kL

1 + 2ckL
.

Using the above, we get from (36)

∥zk+1 − x∗∥2 ≤ ∥zk − x∗∥2 − 2ρk(fSk
(xk)− fSk

(x∗)) + 2ckλk(fSk
(xk−1)− fSk

(x∗))

+ 2ckλk(fSk
(x∗)− f∗

Sk
) +

6c2kL

1 + 2ckL
(fSk

(x∗)− f∗
Sk
)

+
2c2kL

1 + ckL
max

{
2ckL− 1

2ckL+ 1
, 0

}
f∗
Sk
.

Taking expectations, we get

E
[
∥zk+1 − x∗∥2

]
≤ E

[
∥zk − x∗∥2

]
− 2ρkE

[
f(xk)− f(x∗)

]
+ 2ckλkE

[
f(xk−1)− f(x∗)

]
+

(
2ckλk +

6c2kL

1 + 2ckL

)
σ2
int +

2c2kL

1 + ckL
max

{
2ckL− 1

2ckL+ 1
, 0

}
σ2
pos. (37)

Rearranging terms, we get

2ρkE
[
f(xk)− f(x∗)

]
− 2ckλkE

[
f(xk−1)− f(x∗)

]
≤ E

[
∥zk − x∗∥2

]
− E

[
∥zk+1 − x∗∥2

]
+

(
2ckλk +

6c2kL

1 + 2cL

)
σ2
int

+
2c2kL

1 + ckL
max

{
2ckL− 1

2ckL+ 1
, 0

}
σ2
pos. (38)

Combining equation 35 and equation 38 for iterations {1, . . . ,K − 1} we get

2ρ0E
[
f(x0)− f(x∗)

]
+ 2

K−1∑
k=1

ρkE
[
f(xk)− f(x∗)

]
− 2

K−1∑
k=1

ckλkE
[
f(xk−1)− f(x∗)

]
= 2

K−1∑
k=0

ρkE
[
f(xk)− f(x∗)

]
− 2

K−2∑
k=0

ckλkE
[
f(xk)− f(x∗)

]
≤ 2

K−1∑
k=0

(ρk − ckλk)E
[
f(xk)− f(x∗)

]
≤ ∥z0 − x∗∥2 + 6c20L

1 + 2c0L
σ2
int +

2c20L

1 + c0L
max

{
2c0L− 1

2c0L+ 1
, 0

}
σ2
pos

+

K−1∑
k=1

(
2ckλk +

6c2kL

1 + 2ckL

)
σ2
int +

K−1∑
k=1

2c2kL

1 + ckL
max

{
2ckL− 1

2ckL+ 1
, 0

}
σ2
pos. (39)
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Note that choosing λk = min
{
ckL, 0.5(1 + ckL)

−1(1 + 2ckL)
−1
}

ensures that ρk
2 ≥ ckλk. Indeed,

we have
ρk
2

=
ck

2(1 + ckL)(1 + 2ckL)
> ckλk

⇔ 1 > 2λk(1 + ckL)(1 + 2ckL).

Therefore, from (39) and the facts that λ0 = 0 and λk ≤ ckL we get

K−1∑
k=0

ρkE
[
f(xk)− f(x∗)

]
≤ ∥z0 − x∗∥2 +

K−1∑
k=0

(
2ckλk +

6c2kL

1 + 2ckL

)
σ2
int

+
K−1∑
k=0

2c2kL

1 + ckL
max

{
2cL− 1

2cL+ 1
, 0

}
σ2
pos

≤ ∥z0 − x∗∥2 + 8Lσ2
int

K−1∑
k=0

c2k

+
K−1∑
k=0

2c2kLmax

{
2ckL− 1

2ckL+ 1
, 0

}
σ2
pos. (40)

We have by Lemma 7

K−1∑
k=0

ρk =
K−1∑
k=0

ck
(1 + ckL)(1 + 2ckL)

≥
K−1∑
k=0

ck
(1 + c0L)(1 + 2c0L)

≥ 4c0
√
K

5(1 + c0L)(1 + 2c0L)
,

K−1∑
k=0

c2k
Lem 7
≤ c20 log(K + 2), (41)

K−1∑
k=0

c2k max

{
2ckL− 1

2ckL+ 1
, 0

}
≤

K−1∑
k=0

c2k max

{
2c0L− 1

2c0L+ 1
, 0

}
≤ c20 log(K + 2)max

{
2c0L− 1

2c0L+ 1
, 0

}
.

Therefore, using equation 41, z0 = x0 in equation 40 and dividing both sides in equation 40 by∑K−1
k=0 ρk we derive

K−1∑
k=0

ρk∑K−1
k=0

E
[
f(xk)− f(x∗)

]
≤ ∥x0 − x∗∥2∑K−1

k=0 ρk
+ 8Lc20σ

2
int

log (K + 2)∑K−1
k=0 ρk

+ 2c20L
log(K + 2)∑K−1

k=0 ρk
max

{
2c0L− 1

2c0L+ 1
, 0

}
σ2
pos. (42)

With an lower bound on
∑K−1

k=0 and Jensen’s inequality we conclude that

E
[
f(x̂K−1)− f(x∗)

]
≤ 5(1 + c0L)(1 + 2c0L)∥x0 − x∗∥2

4c0
√
K

+ 10Lc0(1 + c0L)(1 + 2c0L)σ
2
int

log (K + 2)√
K

+ 5c0L(1 + c0L)
log(K + 2)

2
√
K

max {2c0L− 1, 0}σ2
pos, (43)

where x̂K−1 =
∑K−1

k=0
ρk∑K−1

k=0 ρk
xk.
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F Stability of NGN-M on a Simple Problem

We consider 1D convex functions of the form f(x) = Lx2(1 + p2(x)) that satisfy the following
assumption.

Assumption 4. There exists a constant C such that C(1 + p2(x)) ≥ xp(x)p′(x)).

Note that 1 + p2(x) ≥ 1 and deg(1 + p2(x)) = deg(xp(x)p′(x)). Therefore, this assumption is
mild.

Remark 3. For example, the function f(x) = x2(1 + x2) (i.e., p(x) = x) is convex and satisfies
Assumption 4 with C = 1.

Remark 4. Let p(x) =
∑m

j=0 ajx
j . Then for large values of x in magnitude, p(x) ∼ amxm, p′(x) ∼

mamxm−1. Therefore, the constant C should be expected of order C ≈ m, where m = deg(p(x)).

The function f(x) is non-negative for any x ∈ R and its minimum f∗ = 0 is attained at x = 0
by design. Let us compute a step of NGN-M on this problem

xk+1 = xk − (1− β)
c

1 + c
2f(xk)

(f ′(xk))2
f ′(xk) + β(xk − xk−1)

= xk − (1− β)
2Lc(1 + p2(xk) + xkp(xk)p′(xk))

1 + 4L2c[xk]2

2L[xk]2(1+p2(xk))
(1 + p2(xk) + xkp(xk)p′(xk))2

xk + β(xk − xk−1)

= xk − (1− β)
2Lc(1 + p2(xk) + xkp(xk)p′(xk))

1 + 2Lc
1+p2(xk)

(1 + p2(xk) + xkp(xk)p′(xk))2︸ ︷︷ ︸
:=γ̂k

xk + β(xk − xk−1). (44)

Note that the convexity of f implies that

f(0) ≥ f(x) + f ′(x)(0− x)

0 ≥ Lx2(1 + p2(x))− 2Lx2(1 + p2(x) + xp(x)p′(x))

0 ≥ −Lx2(1 + p2(x))− 2Lx3p(x)p′(x)

xp(x)p′(x) ≥ −1

2
(1 + p2(x)). (45)

In particular, equation 45 implies that 1 + p2(x) + xp(x)p′(x) ≥ 1
2(1 + p2(x)) > 0. Therefore, we

can obtain lower and upper bounds on γ̂k.

Lemma 8. Let Assumption 4 hold with a constant C > 0 and f(x) = x2(1 + p2(x)) be convex.
Let c ≥ 1

2L . Then we have γ̂k ∈
[

1
2(1+C) , 2

]
.

Proof. Indeed, the upper bound on γ̂k follows from the following inequality

γ̂k =
2Lc(1 + p2(xk) + xkp(xk)p′(xk))

1 + 2Lc
1+p2(xk)

(1 + p2(xk) + xkp(xk)p′(xk))2

≤ 2Lc(1 + p2(xk) + xkp(xk)p′(xk))
2Lc

1+p2(xk)
(1 + p2(xk) + xkp(xk)p′(xk))2

=
1 + p2(xk)

1 + p2(xk) + xkp(xk)p′(xk)
≤ 2, (46)
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due to equation 45. The lower bound can be obtained as follows

γ̂k =
2Lc(1 + p2(xk) + xkp(xk)p′(xk))

1 + 2Lc
1+p2(xk)

(1 + p2(xk) + xkp(xk)p′(xk))2

=
2Lc(1 + p2(xk) + xkp(xk)p′(xk))(1 + p2(xk))

(1 + p2(xk)) + 2Lc(1 + p2(xk) + xkp(xk)p′(xk))2

≥ 2Lc(1 + p2(xk) + xkp(xk)p′(xk))(1 + p2(xk))

2(1 + p2(xk) + xkp(xk)p′(xk)) + 2Lc(1 + p2(xk) + xkp(xk)p′(xk))2

=
Lc(1 + p2(xk))

1 + Lc(1 + p2(xk) + xkp(xk)p′(xk))

=
Lc(1 + p2(xk))

1 + Lc(1 + p2(xk) + C(1 + p2(xk)))

≥ Lc(1 + p2(xk))

2Lc(1 + C)(1 + p2(xk)))
=

1

2(1 + C)
(47)

The update rule of NGN-M can be rewritten as

xk+1 = xk − (1− β)γ̂kx
k + β(xk − xk−1). (48)

Let us consider the joint dynamics of wk := ([xk]⊤, [xk−1]⊤)⊤ ∈ R2d. We have that

wk =

(
xk

xk−1

)
=

(
xk − (1− β)γ̂kx

k + β(xk − xk−1)
xk−1

)
=

(
I− (1− β)γ̂kI+ βI −βI

I 0

)(
xk

xk−1

)
= Gwk−1, (49)

where

G :=

(
I− (1− β)γ̂kI+ βI −βI

I 0

)
. (50)

Now we are ready to prove the convergence of NGN-M on this simple problem for any value
c ≥ 1

2 .

Theorem 5. Let f(x) = x2(1+ p2(x)) be convex and Assumption 4 holds. Let β ≥ (2(1+C)−1)2

(2(1+C)+1)2
and

c ≥ 1
2L . Then the iterates of NGN-M on f(x) converge to the minimum f∗ = 0.

Proof. We follow the standard proof of SGD with Polyak momentum [Polyak, 1964]. At this stage,
we need to estimate the eigenvalues of G. To do so, we will proceed with a permutation matrix Π4

which transforms the matrix G to the block-diagonal matrix as

G =

G1 0 . . . 0
· · · · · · · · · · · ·
0 0 . . . Gd

 , (51)

where

Gi :=

(
1 + β − (1− β)γ̂k −β

1 0

)
(52)

4The permutation matrix Π is defined as Πij =


1 i odd , j = i

1 i even , j = 2n+ i

0 else
. Note that permutation matrices preserve

eigenvalues.
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Since the matrix G is a block-diagonal matrix, we have ∥G∥ ≤ maxi ∥Gi∥. Therefore, the problem
is now simplified to bounding the spectral radii of the individual blocks Gi, for i = 1, 2, . . . , d. The
two eigenvalues u1 and u2 of Gi are the roots of the quadratic

q(u) := u2 − (1 + β − (1− β)γ̂k)u+ β = 0, (53)

which take different values depending on the discriminant ∆ := (1 + β − (1− β)γ̂k)
2 − 4β. Let us

find the values of β when the discriminant is negative. We need to satisfy the inequality

(1 + β − (1− β)γ̂k)
2 − 4β ≤ 0 ⇔ (1 + β)2 + (1− β)2γ̂2k − 2(1 + β)(1− β)γ̂k − 4β ≤ 0

⇔ (1− β)2 + (1− β)2γ̂2k − 2(1 + β)(1− β)γ̂k ≤ 0

⇔ (1− β)(1 + γ̂2k) ≤ 2(1 + β)γ̂k

⇔
1 + γ̂2k
2γ̂k

≤ 1 + β

1− β
. (54)

Since the function 1+y2

2y for y ∈
[

1
2(1+C) , 2

]
attains the maximum 4(1+C)2+1

4(1+C) at y = 1
2(1+C) , then we

satisfy the last inequality, and consequently the discriminant is non-positive, if we choose

4(1 + C)2 + 1

4(1 + C)
≤ 1 + β

1− β
. (55)

The above inequality is satisfied for β ∈
[
(2(1+C)−1)2

(2(1+C)+1)2
, 1
)
. Therefore, we obtain that for such choice

of β we have ∆i ≤ 0 for all i ∈ [d]. Therefore, the zeros of the quadratic q(u) are complex, and are
equal in absolute value

|u1| = |u2| =
√
β < 1. (56)

This gives us that ∥Gi∥ ≤
√
β < 1. Therefore, the algorithm converges for any value of β in this

range.
It remains to use Lemma 11 from Foucart [2012] which says that for a given matrix A ∈ Rd×d,

and ϵ > 0, there exists a matrix norm ∥ · ∥ such that

∥A∥ ≤ ρ(A) + ϵ, (57)

where ρ(A) = max{|λ| : λ eigenvalue of A} (spectral radius of A).
Asymptotically 5 (as k → ∞, one can show (see Theorem 12 in Foucart [2012]) that

∥wk∥2 = O(ρ(G)k), (58)

where ρ(G) ≤
√
β < 1 in our analysis. Therefore, NGN-M with hyperparameters c ≥ 1

2 and β ≥ 1
0

converges.

Remark 5. For example, NGN-M converges on f(x) = x2(1 + x2) for any c ≥ 1
2 and β ≥ 9

25 .

Theorem 5 shows that NGN-M remains stable even with an arbitrarily large step-size hyperpa-
rameter c. Thanks to the adaptive nature of NGN step-size, the actual update scale is automatically
shrunk when necessary, preserving convergence. Importantly, this is possible with a choice of mo-
mentum parameter β close to 1, which extends the results of Section 4. We acknowledge that
our current analysis is restricted to the special convex class of 1D functions f(x) = x2(1 + p2(x))
satisfying Assumption 4. Extending such stability guarantees to wider function classes with large
momentum β remains a significant open challenge.

To support the theoretical result, we test the performance of NGN-M and GDM (Gradient Descent
with Momentum) on the problem f(x) = x2(1+x2), which is convex and satisfies Assumption 4; see
Figure F.1. We run both algorithms, varying the step-size hyperparameter in {10−4, . . . , 104}. We

5A non-asymptotic version of the analysis can be derived using Theorem 5 by Wang et al. [2021]
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run algorithms for 105 iterations. We stop training if the loss reaches a threshold 10−15 or exceeds
1010 for the first time. We observe that (i) for small step-size hyperparameters, both methods
converge but do not reach the threshold 10−15; (ii) NGN-M reaches the threshold even for extremely
large values of the step-size hyperparameter while GDM diverges. (iii) the fastest convergence of
GDM is achieved with the step-size hyperparameter 10−2 after 691 iterations while the fastest
convergence of NGN-M is achieved with c = 101 after 269 iterations. In other details, NGN-M
achieves faster convergence and much more stable to the choice of the step-size hyperparameter.
These results align well with our theoretical analysis.
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Figure F.1: Comparison of SGDM and NGN-M when minimizing a function f(x) = x2 + x4.
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G How to Derive Diagonal NGN-based Step-size?

Here we provide derivations of how combine NGN and diagonal step-size following Section 3.3 for
completeness.

We consider the following model

pk = argmin
p∈Rd

[
fΣk,c(x

k + p) := (r(xk) +∇r(xk)⊤p)2 +
1

2c
∥p∥2Σk

]
, (59)

where r(x) =
√

f(x). We compute the gradient of RHS of (59) w.r.t. p and equal it to zero:

∇pfΣk,c(x
k + p) = 2

(
r(xk) +∇r(xk)⊤p

)
∇r(xk) +

1

c
Σkp

=

(
2∇r(xk)∇r(xk)⊤ +

1

c
Σk

)
p+ 2r(xk)∇r(xk).

Therefore, we have

pk = −
(
2∇r(xk)∇r(xk)⊤ +

1

c
Σk

)−1

2r(xk)∇r(xk).

Using Shermann-Morrison formula (A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1+u⊤A−1v
with A = 1/cΣk we derive

pk = −

(
cΣ−1

k −
2c2Σ−1

k ∇r(xk)∇r(xk)⊤Σ−1
k

1 + 2c∇r(xk)⊤Σ−1
k ∇r(xk)

)
2r(xk)∇r(xk)

= −2cr(xk)

(
1−

2c∇r(xk)⊤Σ−1
k ∇r(xk)

1 + 2c∇r(xk)Σ−1
k ∇r(xk)

)
Σ−1

k ∇r(xk)

= − 2cr(xk)

1 + 2c∇r(xk)Σ−1
k ∇r(xk)

Σ−1
k ∇r(xk).

Now we plug-in r(xk) =
√
f(xk) and ∇r(xk) = 1

2
√

f(xk)
∇f(xk) and obtain

pk = − 2c
√

f(xk)

1 + 2c 1
4f(xk)

∇f(xk)⊤Σ−1
k ∇f(xk)

1

2
√
f(xk)

Σ−1
k ∇f(xk)

=
c

1 + c
2f(xk)

∥∇f(xk)∥2
Σ−1

k

Σ−1
k ∇f(xk).

G.1 Design Comparison of NGN-MDv1 and NGN-MDv2

The derivations in equation 3 are used to provide an intuition of how one can add a diagonal step-
size into NGN by choosing the regularization matrix Σk. By choosing Σk = Dk we recover the
update direction of NGN-MDv1. In this case, we have only one global NGN step-size in front of Dk.
The design of NGN-MDv2 follows a more straightforward intuition. In particular, it can be seen as
a direct extension of NGN to diagonal case by replacing the squared gradient norm ∥∇fSk

(xk)∥2 by
the squared partial derivative (∇jfSk

(xk))2 for each parameter j ∈ [d].
The main difference in comparison with Adam is the order in which the preconditioning and

momentum is applied. In both NGN-MDv1 and NGN-MDv2 we average the preconditioned updates
Σ−1

k ∇fSk
(xk), i.e. we first apply preconditioning and momentum later. In contrast, in Adam the

stochastic gradients are averaged to construct new momentum term, and then the momentum is
preconditioned. In other words, the momentum is applied first and then it is followed by precon-
ditioning. We believe this change might be one of the reasons behind the step-size hyperparameter
resilience as well.

In practice, we found out that the tuned performance of NGN-MDv1 is slightly better than that
of NGN-MDv2. Moreover, NGN-MDv1 demonstrates higher resilience to the choice of the step-size
hyperparameter than NGN-MDv2.
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Table 2: Train time of Adam and NGN-MDv1 when training language models.

Model Method Time per Iteration (sec) Time per Optimizer Update (sec)

70M AdamW
NGN-MDv1

1.63±0.01
1.65± 0.01

0.0048± 0.0002
0.0130± 0.0002

160M AdamW
NGN-MDv1

3.33± 0.03
3.37± 0.02

0.0088± 0.0003
0.0239± 0.0003

410M AdamW
NGN-MDv1

8.41± 0.06
8.68± 0.06

0.0838± 0.0009
0.2154± 0.0007

G.2 Computation Cost of NGN-MD

Implementing any version of NGN-MD in practice might be slightly more computationally expen-
sive. However, we highlight that computing a step of NGN-MD does not involve matrix-vector
operations since the preconditioner is a diagonal matrix, and the matrix notation is used only for
the convenience of presentation. The additional computation cost that we have in NGN-MDv1 is the
computation of ∥∇fSk

(xk)∥2
D−1

k

. This can naïvely be done by one additional pass over the gradient

and summing the terms 1
(Dk)j

(∇jfSk
(xk))2 for j ∈ [d]. This operation does not require additional

matrix multiplication. However, it can be computed more efficiently while updating Dk. The rest
of the NGN-MDv1 implementation does not add any significantly costly operations in comparison
with Adam.

We compare in Table 2 the time per iteration and optimizer update when training language
models from Section 5 using AdamW and NGN-MDv1. We notice that our naive implementation of
NGN-MDv1 is about 2.5 times slower than PyTorch’s AdamW. This is expected since our algorithm
requires two passes over the gradient. Nevertheless, in this setting training time is dominated by
forward and backward computations, keeping NGN-MDv1 competitive with AdamW. Moreover, as
noted above, this overhead can be largely eliminated by computing the weighted gradient concur-
rently with the second-momentum vk update. We do not aim to provide the most efficient imple-
mentation of NGN-MDv1 as the primary goal of our work is to highlight the stability advantages
that NGN step-size brings in the training of neural networks.

G.2.1 Distributed Training

In a vanilla DDP implementation [Li et al., 2020], computing the weighted gradient norm ∥∇fSk
(xk)∥2

D−1
k

is straightforward since gradients are replicated across devices. We only require an additional all-
reduce to synchronize fSk

(xk) across devices, which is, however, a lightweight communication (just
a single float) and, in principle, can even be overlapped with the backward pass.

However, with more sophisticated types of parallelism, like Tensor Parallel [Shoeybi et al., 2019]
or ZeRO-2 [Rajbhandari et al., 2020], computing the weighted gradient norm introduces additional
communication, as gradients are sharded across devices. This could still be implemented efficiently
by accumulating squared gradient entries in each device and all-reducing only a single float, but
it will, nevertheless, result in a computation and communication overhead for NGN-MDv1. We
acknowledge that our methods might not be scalable to large distributed training, and adjustments
are needed to make NGN-MDv1 work in this case. Nonetheless, we believe that our findings offer
useful insights toward designing more stable optimization algorithms.

H How to add weight decay to NGN-MDv1?

Regularization techniques serve a fundamental purpose in minimizing generalization error. Orthog-
onal to their role for generalization, modern deep learning tasks often benefit from the use of weight
decay [Xiao, 2024]. Despite its widespread application, the role of weight decay is poorly understood.
Andriushchenko et al. [2023] suggested that it might provide implicit regularization by stabilizing
the loss in over-parameterized neural networks and helping to balance the bias-variance tradeoff
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that leads to lower training loss in under-parameterized networks. However, even in the case of
SGD, there is still uncertainty regarding how the weight decay mechanism should be incorporated,
as various implementations may exist [Zhang et al., 2018].

We propose two ways of adding weight decay to NGN-MDv1. The first variant follows the
approach of Loshchilov and Hutter [2019], adding decoupled weight decay λ:

xk+1 = xk − λcxk − (1− β1)Σ
−1
k ∇fSk

(xk) + β1(x
k − xk−1). (60)

In this update rule, the weight is added separately from the update direction Σ−1
k ∇fSk

(xk). We call
the resulting algorithm (60) Dec-NGN-MDv1, that stands for decoupled NGN-MDv1.

H.1 Combining NGN-MDv1 and Weight Decay Regularization

We now discuss how to combine NGN-MDv1 and weight decay, following the idea that weight decay
should perform weight regularization.

We consider the following model

fΣk,λ(x
k + p) := (r(xk) +∇r(xk)⊤p)2 +

1

2c
∥p∥2Σk

+
λ

2
∥xk + p∥2Σk

.

By taking the gradient of fΣk,λ w.r.t. p we get

0 = 2(r(xk) +∇r(xk)⊤p)∇r(xk) +
1

c
Σkp+ λΣk(x

k + p)

=

(
2∇r(xk)∇r(xk)⊤ +

1

c
Σk + λΣk

)
p+ 2r(xk)∇r(xk) + λΣkx

k.

Therefore, we get

pk = −
(
2∇r(xk)∇r(xk)⊤ +

1

c
Σk + λΣk

)−1

(2r(xk)∇r(xk) + λΣkx
k).

Using Sherman-Morrison formula (A + uv⊤)−1 = A−1 − A−1uv⊤A−1

1+u⊤A−1v
with A = (λ + 1/c)Σk and

u = v =
√
2∇r(xk) we get that(

2∇r(xk)∇r(xk)⊤ +
1

c
Σk + λΣk

)−1

=
c

1 + λc
Σ−1

k −
2c2

(1+λc)2
Σ−1

k ∇r(xk)∇r(xk)⊤Σ−1
k

1 + 2c
1+λc∇r(xk)Σ−1

k ∇r(xk)
.

Therefore, we have

pk = −

 c

1 + λc
Σ−1

k −
2c2

(1+λc)2
Σ−1

k ∇r(xk)∇r(xk)⊤Σ−1
k

1 + 2c
1+λc∇r(xk)Σ−1

k ∇r(xk)

 (2r(xk)∇r(xk) + λΣkx
k)

= −2cr(xk)

1 + λc

(
1−

2c
1+λc∇r(xk)⊤Σ−1

k ∇r(xk)

1 + 2c
1+λc∇r(xk)Σ−1

k ∇r(xk)

)
Σk∇r(xk)

− λc

1 + λc
xk +

2c2λ
1+λcΣ

−1
k ∇r(xk)∇r(xk)⊤xk

1 + 2c
1+λc∇r(xk)Σ−1

k ∇r(xk)

= −2cr(xk)

1 + λc

1

1 + 2c
1+λc∇r(xk)Σ−1

k ∇r(xk)
Σ−1

k ∇r(xk)

− λc

1 + λc
xk +

2c2λ
1+λcΣ

−1
k ∇r(xk)∇r(xk)⊤xk

1 + 2c
1+λc∇r(xk)Σ−1

k ∇r(xk)
.
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Algorithm 4 NGN-MDv1W

1: Input: x0 ∈ Rd, step-size parameter c > 0, momentum parameters β1, β2 ∈ [0, 1), weight decay
parameter λ ≥ 0, stabilization parameter ε > 0

2: for k = 0, 1, . . . ,K − 1 do
3: Sample a batch Sk ⊆ [n] and compute fSk

and ∇fSk
(xk)

4: Compute vk = β2v
k−1 + (1− β2)(∇fSk

(xk)⊙∇fSk
(xk))

5: Compute Dk = diag(εI+
√

vk/(1− βk
2 ))

6: Compute

γk =

c
(1+λc)

[
1− cλ

2fSk
(xk)

∇fSk
(xk)⊤xk

]
+

1 + c
2fSk

(xk)(1+λc)
∥∇fSk

(xk)∥2
D−1

k

7: Update xk+1 = 1
1+λcx

k − (1− β1)γkD
−1
k ∇fSk

(xk) + β1(x
k − xk−1)

8: end for
[·]+ denotes max{0, ·}.

Using the connection ∇r(xk) = 1

2
√

f(xk)
∇f(xk) and r(xk) =

√
f(xk) we get

pk = −2c
√

f(xk)

1 + λc

1

1 + 2c
4f(xk)(1+λc)

∇f(xk)⊤Σ−1
k ∇f(xk)

Σ−1
k

1

2
√

f(xk)
∇f(xk)

− cλ

1 + λc
xk +

2c2λ
4f(xk)(1+λc)

Σ−1
k ∇f(xk)∇f(xk)⊤xk

1 + 2c
4(1+λc)f(xk)

∇f(xk)⊤Σ−1
k ∇f(xk)

= −
c/(1+λc)

1 + c
2f(xk)(1+λc)

∥∇f(xk)∥2
Σ−1

k

Σk∇f(xk)− cλ

1 + λc
xk

+
cλ

1 + λc

c
2f(xk)

∇f(xk)⊤xk

1 + c
2f(xk)(1+λc)

∥∇f(xk)∥2
Σ−1

k

Σ−1
k ∇f(xk).

To summarize, the update of NGN-Dv1W is the following

xk+1 = xk + pk

=
1

1 + λc
xk +

cλ

1 + λc

c
2f(xk)

∇f(xk)⊤xk

1 + c
2f(xk)(1+λc)

∥∇f(xk)∥2
Σ−1

k

Σ−1
k ∇f(xk)

−
c/(1+λc)

1 + c
2f(xk)(1+λc)

∥∇f(xk)∥2
Σ−1

k

Σ−1
k ∇f(xk)

=
1

1 + λc
xk −

c
1+λc

(
1− cλ

2f(xk)
∇f(xk)⊤xk

)
1 + c

2f(xk)(1+λc)
∥∇f(xk)∥2

Σ−1
k

Σ−1
k ∇f(xk). (61)

To prevent the step-size next to Σ−1
k ∇f(xk) from being negative, the final update has the form

xk+1 =
1

1 + λc
xk −

c
1+λc

[
1− cλ

2f(xk)
∇f(xk)⊤xk

]
+

1 + c
2f(xk)(1+λc)

∥∇f(xk)∥2
Σ−1

k

Σ−1
k ∇f(xk), (62)

where [·]+ := max{·, 0}. Now we can add momentum on top and obtain the following update of
NGN-MDv1W

xk+1 =
1

1 + λc
xk −

c
1+λc

[
1− cλ

2f(xk)
∇f(xk)⊤xk

]
+

1 + c
2f(xk)(1+λc)

∥∇f(xk)∥2
Σ−1

k

Σ−1
k ∇f(xk) + β(xk − xk−1). (63)
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Figure H.1: Adding weight decay when pretraining a 70M Transformer++. When properly tuned,
a value of weight decay > 0 enhances the performance of all algorithms. NGN-MDv1 retains his
characteristic stability, and achieves smaller perplexity in all scenarios.

This combination of NGN-MDv1 and weight decay is summarized in Algorithm 4. We highlight
that now the weight decay is incorporated inside the adaptive step-size as well as regularizing the
coefficient next to xk.

H.2 Empirical Validation of the Proposed Combinations

Having two possible ways of adding weight decay to NGN-MDv1, we test them on pretraining a 70M
transformer on language modeling. The validation perplexity at the end of training is reported in
Figure H.1. We note that when weight decay is turned off, both NGN-MDv1W and Dec-NGN-MDv1
reduce to NGN-MDv1.

First, we observe that when weight decay is properly tuned, all algorithms improve over the
baseline case with no weight decay, which is consistent with the observation of Xiao [2024] and
Andriushchenko et al. [2023] on AdamW. We also note that Dec-NGN-MDv1 and NGN-MDv1W
require a smaller weight decay value compared to the other algorithms. Finally, the stability and
performance of NGNMDv1 are preserved by both variations, allowing training with larger learning
rates, and significantly improving over AdamW and Momo-Adam.

We do not observe a substantial difference between the two proposed modifications of NGN-MDv1
for this task. We remark however that these two versions serve substantially different purposes, and
pretraining language models might not be the most representative task to evaluate the effect of
adding regularization.
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I Additional Experiments on Toy Problems

I.1 Additional Experiments on the Problem with Many Minima

Now, we provide a simple example of minimizing a function

f(x) = (sin(1 + cos(−π + x))− 0.2x)2 + (sin(1 + cos(π − x)) + 0.2x)4 (64)

that has many sharp sub-optimal local and flat global minima. We compare the performance of
NGN-M and SGDM varying the step-size hyperparameter in {100, 101, 102, 103} and the starting
point in [−20, 20] with a step 4/306. Based on the results in Figure I.1 (right), we conclude that
(i) for small step-sizes, both methods likely get stuck at sub-optimal local minima and reach the
global minima only if they are initialized close enough to it; (ii) for large step-sizes, we observe less
runs of SGDM reaching the global minima; (iii) in contrast, for NGN-M with large step-sizes, we
observe more runs reaching the global minima. This is possible due to the adaptive nature of the
NGN step-size that forces NGN-M to converge to the flatness of the global minima.
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Figure I.1: Comparison of SGDM and NGN-M when minimizing function in equation 64.

I.2 Comparison on Rosenbrock Function

Now we present the results where we compare NGN-M and SGDM when minimizing the Rosenbrock
function. We report the trajectories of optimizers and training dynamics in Figure I.2 and Figure I.3.

We observe that NGN-M converges for all values of c, indicating its high resilience to the choice
of step-size hyperparameter. In contrast, SGDM already diverges for the step-size hyperparameter
10−2. This can be explained by the adaptive nature of NGN step-size, which decreases the effective
step-size of NGN-M for a more stable convergence. This is especially evident from the trajectories
of algorithms. Indeed, NGN-M effectively moves in the complex valley of the Rosenbrock function,
adapting to the local curvature.
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Figure I.2: Trajectories of NGN-M and SGDM when minimizing the Rosenbrock function and varying
the step-size hyperparameter.

6This step is chosen small enough so that the initial point can be close to any local minima within [−20, 20].
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Figure I.3: Training dynamics of NGN-M and SGDM when minimizing the Rosenbrock function and
varying the step-size hyperparameter.

I.3 Comparison on Quadratic Function with Theoretical Step-size

Next, we run NGN-M with theoretical choice of step-size hyperparameter c = 1/
√
K and ck = 1/

√
k

(see Theorem 1 and Theorem 4 for more details) against fixed choices c ∈ {10−3, 10−4}. The
comparison is made on quadratic function f(x) = 1

2∥(A + rI)x − y∥2, where A ∈ R400×400 and
y ∈ R400 are sampled from standard normal distribution. The constant r controls the condition
number of the problem.

We test the performance of NGN-M varying the condition number of the problem and the
number of iterations; see Figure I.4. We observe that in all the cases, the choice 1/

√
k leads to

faster convergence, supporting our theoretical claims. The choice 1/
√
K demonstrates competitive

performance as well, but it is slightly pessimistic at the beginning of training. In contrast, the
choice c ∈ {10−3, 10−4}, which is a default value in practice, is too small and does not lead to fast
convergence.

These experiments demonstrate that when the problem satisfies all assumptions needed in the
analysis, the choice of the step-size hyperparameter c given by the convergence theorems is a good
starting point in practice and can serve as a baseline when tuning c.
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Figure I.4: Training dynamics of NGN-M with several choices of the step-size hyperparameter varying
the condition number of the quadratic problem.

J Additional Experiments and Training Details

J.1 Training Details

The detailed experiment setup with hyperparameters and training details is presented in Table 3.
We provide links to the exact model architectures used in our experiments (the links are clickable)
as well as links to the tables and figures for each workload. We demonstrate the results averaged
across 3 different random seeds for small and middle-range size experiments. We use standard
values of momentum parameters (β1, β2) = (0.9, 0.999) if the opposite is not specified. The step-
size hyperparameter is tuned across powers of 10 (for some workloads we add additional values of
the step-size hyperparameter shown in the step-size resilience plots). We use PyTorch [Paszke et al.,
2017] implementation of Adam. The implementation of MomSPS, Momo, Momo-Adam are provided
in the corresponding papers. Finally, when employing SGD-M, we set dampening equal to 0.9.

For vision transformers experiments, we follow the setup of Schaipp et al. [2024], and use Pytorch
Image Models codebase [Wightman, 2019]. We train a vit_tiny_patch16_224 for 200 epochs on
Imagenet1k, using a cosine learning rate schedule with a linear warmup of 5 epochs. Differently
than Schaipp et al. [2024], we train in bfloat16, instead of float16, and do not employ weight
decay regularization.

For pre-training Transformers on Causal Language Modeling, we build upon the nanoGPT
[Karpathy, 2022] implementation, augmenting it with Rotational Positional Embedding [Su et al.,
2023], RMSNorm [Zhang and Sennrich, 2019], and SwiGLU [Shazeer, 2020]. We call this enhanced
version Transformer++. Models are trained with a batch size of 256, context length of 2048 tokens,
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Table 3: Summary of experiment setup with all the details on hyperparameters used in each case.

Model Dataset Performance
Results

Stability
Results

Effective
Stepsize
Results

Epochs /
Iterations

Batch
Size Comments

Resnet20 CIFAR10 Tab. 4, 5, 6 Fig. 2, J.1, J.2, J.5 Fig. J.9, J.10, J.6 50 128

Resnet110 CIFAR100 Tab. 4, 5 Fig. 2, J.1, J.2, J.5 100 128

VGG16 CIFAR10 Tab. 4, 5 Fig. J.1, J.2 50 128

MLP MNIST Tab. 4, 5 Fig. J.1, J.3 10 128 2 hidden layers
of size 100

ViT CIFAR10 Tab. 4, 5 Fig. 2, J.1, J.2, J.5 Fig. 5, J.9, J.10, J.7 200 512

LSTM PTB Tab. 5, 6 Fig. J.3 150 20 # layers 3

LSTM Wikitext-2 Tab. 5, 6 Fig. J.8 150 20 # layers 3

Transformer Rotten
Tomatoes Tab. 5, 6 Tab. J.8 2000 16 # heads 8

# layers 24

Transformer Tiny
Shakespeare Tab. 5, 6 Fig. J.3, J.8 2000 16 # heads 8

# layers 24

Resnet18 ImageNet32 Tab. 4, 5, Fig. J.4 45 128 constant learning rate
schedule; no weight decay

Resnet18 ImageNet1k Tab. 4, 5 Fig. 2, J.4 90 256
learning rate decay every

30 epochs by 0.1
no weight decay

ViT-Tiny ImageNet1k Tab. 5 Fig. 3 200 512
cosine learning rate

schedule with linear warm-up
for 5 epochs

no weight decay, bfloat16

70M Transformer++ SlimPajama-627B Tab. 5, 2 Fig. 4, H.1, J.14 2400 256

dim=512, # heads 8
# layers 6, context length 2048
(β1, β2) = (0.9, 0.95), bfloat16
clipping norm 1, linear warm-up

for 10% of iterations

70M Transformer++ FineWeb Tab. 7, 8, 9, 10 4800 128

dim=512, # heads 8
# layers 6, context length 2048
(β1, β2) = (0.9, 0.95), bfloat16
clipping norm 1, linear warm-up

for 10% of iterations

160M Transformer++ SlimPajama-627B Tab. 5, 2 Fig. 4, J.14 Fig. J.11, J.12, J.13 4800 256

dim=768, # heads 12
# layers 12, context length 2048
(β1, β2) = (0.9, 0.95), bfloat16
clipping norm 1, linear warm-up

for 10% of iterations

410M Transformer++ SlimPajama-627B Tab. 5, 2 Fig. 4, J.14 13500 256

dim=1024, # heads 16
# layers 24, context length 2048
(β1, β2) = (0.9, 0.95), bfloat16
clipping norm 1, linear warm-up

for 10% of iterations

1B Transformer++ SlimPajama-627B Tab. 5 Fig. 4, J.14 13500 256

dim=2048, # heads 8
# layers 16, context length 2048
(β1, β2) = (0.9, 0.95), bfloat16
clipping norm 1, linear warm-up

for 10% of iterations

vocabolary size of 50280 and make use of GPT-Neox tokenizer [Black et al., 2022]. We adopt
an enhanced training recipe, made popular by large language models such as LLaMa [Touvron
et al., 2023]. These modifications include: training in bfloat16; employing a linear learning rate
warm-up for 10% of the training steps, followed by cosine annealing to 10−5; omitting biases from
linear layers; using (β1, β2) = (0.9, 0.95) for all algorithms; clipping gradient norms above 1; no
weight tying between embedding and last linear layer. All models are trained on SlimPajama-627B
[Soboleva et al., 2023], a cleaned and deduplicated version of RedPajama We report validation
perplexity on a separate subset of Slim-Pajama consisting of 10M tokens. The total compute is
estimated following Kaplan et al. [2020], where the estimated number of floating-point operations
(FLOPs) is 6 × Number of Parameters × Number of Tokens.

Experiments of small and middle size are performed on 1xRTX 4090. We perform ImageNet32
experiments on 2xA100-40GB, and ImageNet1k experiments on 4xA100-SXM4-40GB. For pretrain-
ing Transformers on Language Modeling, we employ 8xH100-HBM3-80GB GPUs. With multiple
devices in use, we employ Distributed Data Parallel to parallelize the training process.

J.2 Comparison Algorithms that Support Momentum

In the main paper, we provided the test performance only. Now we additionally illustrate the
performance of algorithms w.r.t. training loss convergence. Figure J.1 demonstrates that NGN-M
is the most robust algorithm for the choice of the step-size hyperparameter from this perspective
as well. In Figure J.1, we additionally demonstrate the performance of the algorithms on (VGG16
[Simonyan and Zisserman, 2014], CIFAR10) and (MLP, MNIST) workloads where NGN-M matches
the performance of the state-of-the-art algorithms in this setting and archives higher resilience to
the step-size hyperparameter choice. The best performance results are reported in Table 4 and
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https://github.com/karpathy/nanoGPT
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Table 4: The best validation score (with one standard deviation across 3 runs; accuracy for computer
vision tasks; perplexity for NLP tasks) for the best learning rate choice for each method that supports
momentum.

Model Dataset NGN SGDM NGN-M MomSPS Momo ALR-SMAG

Resnet20 CIFAR10 88.30±0.20 85.42±0.70 88.76±0.05 87.20±0.38 88.86±0.14 88.88±0.19

Resnet110 CIFAR100 64.76±0.26 57.16±2.06 64.98±0.29 63.37±0.71 64.81±0.33 64.73±1.81

VGG16 CIFAR10 90.21±0.10 89.67±0.43 90.42±0.06 87.26±0.21 90.43±0.17 90.49±0.35

MLP MNIST 98.04±0.07 97.63±0.10 97.97±0.08 97.73±0.09 97.97±0.04 97.64±0.06

ViT CIFAR10 83.34±0.24 83.74±0.11 84.95±0.29 83.77±0.27 85.47±0.27 85.54±0.39

Resnet18 ImageNet32 48.63 48.56 48.29 N/A 48.68 N/A

Resnet18 ImageNet1k 67.00 66.73 67.12 N/A 67.09 N/A

Transformer Tiny
Shakespeare 9.27±0.19 8.73±0.13 7.67±0.12 N/A 8.80±0.19 N/A

Transformer Rotten
Tomatoes 9.01±0.22 8.75±0.04 7.12±0.03 N/A 8.65±0.03 N/A

LSTM Wikitext-2 75.33±0.15 82.07±0.16 75.51±0.22 N/A 76.09±0.40 N/A

showcase that NGN-M always matches the performance of other optimizers or improves it.

J.3 Comparison of Algorithms that Support Momentum and Diagonal Step-size

Next, we illustrate the performance of the algorithms that support both momentum and diagonal
step-size. According to the results in Figures J.2 and J.3, NGN-MDv1 achieves the best resilience
to the step-size hyperparameter choice among all considered algorithms. Again, NGN-MDv1 is the
most stable algorithm to the choice of step-size hyperparameter w.r.t. training loss convergence.
Its best performance is competitive to that of other algorithms but the step-size hyperparameter
range that gives such performance is wider.

Moreover, we support our claims about stability on additional workloads such as (VGG16,
CIFAR10) (in Figure J.1), (MLP, MNIST), (LSTM [Hochreiter and Schmidhuber, 1997], PTB
[Mikolov et al., 2010]), and (Transformer [Karpathy, 2022], Tiny Shakespeare [Karpathy, 2015])
workloads. We observe that NGN-MDv1 attains higher robustness to the choice of the step-size
hyperparameter. Finally, the performance results on (LSTM, Wikitext-2 [Merity et al., 2016])
and (Transformer, Rotten Tomatoes [Pang and Lee, 2005]) are reported in Table 5. The results
demonstrate competitive performance of NGN-MDv1 against other benchmarks across all considered
workloads.

J.4 Additional ImageNet Experiments

Now we turn to the experiments involving training Resnet18 on ImageNet1k and ImageNet32. In
Figure J.4 we provide the train loss curves and results on (Resnet18, ImageNet32) workload that
demonstrate that NGN-M and NDN-MDv1 attain better resilience to the step-size hyperparameter
choice than competitors not only from the train loss point of view as well. The best performance
of algorithms is provided in Table 4 and 5. According to them, both NGN-M and NGN-M achieve
competitive performance against considered benchmarks.

J.5 Additional Comparison against Lion, Adabelief, Adabound

This section compares algorithms from Section 5. Moreover, we include the comparison against Lion
[Chen et al., 2024], Adabound [Luo et al., 2019], and Adabelief [Zhuang et al., 2020]. The results are
presented in Table 5.
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Table 5: The best validation score (with one standard deviation; accuracy for computer vision tasks;
perplexity for NLP tasks) for the best learning rate choice for each method that supports diagonal
step-sizes and momentum.

Model Dataset Adam Momo-Adam NGN-MDv1 NGN-MDv2 Lion Adabelief Adabound

Resnet20 CIFAR10 86.96±0.70 89.41±0.36 89.53±0.11 87.80±0.16 88.09±0.27 87.47±0.48 85.00±0.56

Resnet110 CIFAR100 64.12±0.94 67.10±0.53 66.10±0.45 64.33±0.40 61.85±0.77 65.32±0.43 61.28±0.39

VGG16 CIFAR10 90.26±0.23 90.95±0.28 90.64±0.18 90.07±0.37 N/A N/A N/A

MLP MNIST 97.44±0.19 97.96±0.10 98.10±0.06 97.67±0.17 N/A N/A N/A

ViT CIFAR10 85.96±0.23 85.74±0.12 85.65±0.10 86.56±0.11 86.89±0.19 85.05±0.47 80.32±0.47

Transformer Rotten
Tomatoes 6.80±0.07 6.81±0.05 6.90±0.05 6.83±0.05 N/A N/A N/A

Transformer Tiny
Shakespeare 6.80±0.06 6.80±0.05 6.89±0.06 6.82±0.05 N/A N/A N/A

LSTM PTB 70.95±0.08 71.09±0.05 70.84±0.20 71.37±0.17 N/A N/A N/A

LSTM Wikitext-2 81.49±1.49 82.23±0.64 75.24±0.21 81.99±0.78 N/A N/A N/A

Resnet18 ImageNet32 48.11 48.09 48.06 47.55 N/A N/A N/A

Resnet18 ImageNet1k 67.17 67.06 67.15 67.32 N/A N/A N/A

ViT-Tiny ImageNet1k 71.05±0.16 71.22±0.36 71.345±0.22 N/A N/A N/A N/A
Transformer++

70M SlimPajama-627B 34.38±0.12 34.96±0.11 33.84±0.33 N/A N/A N/A N/A

Transformer++
160M SlimPajama-627B 24.03±0.02 24.29±0.10 23.32±0.06 N/A N/A N/A N/A

Transformer++
410M SlimPajama-627B 16.65±0.03 17.07±0.05 16.48±0.03 N/A N/A N/A N/A

Transformer++
1B SlimPajama-627B 13.09 N/A 13.11 N/A N/A N/A N/A

We observe that NGN-MDv1 and NGN-MDv2 both achieve competitive performance across var-
ious Deep Learning workloads. In Figure J.5, we observe that Lion, Adabound and Adabelief al-
gorithms do not match always the performance of NGN-MDv1 and Adam: Adabelief has worse
performance on (Resnet20, CIFAR10) workload; Adabound has worse performance on (Resnet20,
CIFAR10), (Resnet110, CIFAR100), and (ViT, CIFAR10) workloads; Lion has worse performance
on (Resnet110, CIFAR100) workload. Moreover, their resilience to the step-size hyperparameter
choice is lower than that of NGN-MDv1. To summarize, NGN-M and NGN-MDv1 are the most
robust algorithms to the choice of step-size hyperparameter.

J.6 Comparison of Adaptive Step-sizes of Adam, Momo-Adam, and NGN-MDv1

Next, we conduct experiments to compare the adaptive step-size of Adam, Momo-Adam, and NGN-
MDv1. Note that ResNet20 model consists of 3 base blocks, and each block has 3 convolution layers.
In Figure J.6 we plot the average adaptive step-size of the layers j ∈ {layer1.0.conv1, layer2.0.conv1, layer3.0.conv1}
of ResNet20 that corresponds to the first convolution layer within each base block. Similarly, in Fig-
ure J.7 we plot the average adaptive step-size of the layers j ∈ {layer0.0.fn.to_qkv, layer3.0.fn.to_qkv, layer5.0.fn.to_qkv}
that corresponds to the attention layers of the first, fourth, and sixth base blocks.

Since the adaptivity of Adam is only in the second-order momentum applied as a normalization,
in our experiment we compare the following quantities

γ

(Dk)(j)
for Adam,

τk
(Dk)(j)

for Momo-Adam,
γk

(Dk)(j)
for NGN-MDv1, (65)

where γ is the step-size hyperparameter of Adam.
Let us first describe the results for ResNet20 in Figure J.6. We observe that NGN-MDv1 tends

to set smaller effective step-size compared to two other algorithms. This is especially visible for
the large step-size hyperparameter values where the adaptive step-size of NGN-MDv1 is by several
orders in magnitude smaller than that of Adam and Momo-Adam. In contrast, the coordinate-wise
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Figure J.1: Stability performance of algorithms supporting momentum varying step-size hyper-
arameter (c for NGN and NGN-M, α0 for Momo, and step-size for SGDM). We observe that NGN-M
achieves the training loss close to the best possible for a wider range of the step-size hyperparameter.

adaptive step-size of Momo-Adam is mostly follow that of Adam. Considering that the stability
performance of NGN-MDv1 is much higher for this task, this happens mainly due to the fact that
the adaptation mechanism of NGN-MDv1 step-size is more conservative than that of Momo-Adam.

Now we switch to the results on ViT model in Figure J.7. Here both Momo-Adam and NGN-MDv1
tend to utilize smaller effective coordinate-wise step-size, by several orders in magnitude smaller
than that of Adam. However, the adaptation mechanism of NGN-MDv1 is still more conservative
than that of Momo-Adam, especially for large step-size hyperparameters. We also highlight that
in this experiment the best performance of NGN-MDv1 is achieved with c = 10−3. When we vary
the step-size hyperparameter c, the effective coordinate-wise step-size does not change dramatically,
especially for layers.0.0.fin.to_qkv layer.

J.7 Extended Comparison of Momentum-based Algorithms on NLP Tasks

We switch to comparison of NGN-M, Momo, NGN, and SGDM on NLP tasks. In particular, we
consider the training of Transformer (based on NanoGPT) on the Tiny Shakespeare and Rotten
Tomatoes datasets and LSTM on the Wikitext-2 dataset from Appendix J.3. We report the results
in Figure J.8 while the best performance is shown in Table 4. First, note that all algorithms do
not match the best performance of those that incorporate diagonal step-size and momentum (see
Table 5). Such results are expected since the training of NLP models has significantly different
coordinate-wise conditioning. Nonetheless, NGN-M algorithm achieves better resilience to the step-
size hyperparameter choice, especially in the training of Transformer models. Therefore, NGN-M
across various model architectures and task domains.
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Figure J.2: Stability performance of algorithms supporting momentum and diagonal step-size vary-
ing step-size hyperparameter (c for NGN-MDv1 and NGN-MDv2, α0 for Momo-Adam, and step-size
for Adam). We observe that NGN-MDv1 achieves the training loss close to the best possible for a
wider range of the step-size hyperparameter.

Table 6: The best validation score (with one standard deviation; accuracy for image classification;
perplexity for language modeling) for the best learning rate choice for each method that supports
diagonal step-sizes.

Model Dataset Adagrad RMSprop NGN-D

Resnet20 CIFAR10 85.90±0.30 86.71±0.64 86.98±0.15

Transformer Rotten Tomatoes 7.77±0.02 6.87±0.05 6.92±0.03

Transformer Tiny Sheaksper 7.77±0.05 7.00±0.13 6.90±0.05

LSTM PTB 99.24±2.13 69.00±0.17 71.54±0.11

LSTM Wikitext-2 113.19±4.36 79.48±0.45 75.44±0.12

J.8 Comparison of Algorithms with Diagonal Step-size

Now we compare algorithms with diagonal step-size such as NGN-D, Adagrad Duchi et al. [2011],
and RMSprop Kingma and Ba [2015]. Since NGN-D requires to find constants {cj}dj=1 where d is
the size of the model. Finding sufficiently good constants cj might be a challenging task since d is
a large number. Therefore, we use RMSprop preconditioner Dk to set them as cj = c/(Dk)(j). We
leave the exploration of how to set constants cj properly for future research.

For each method, we tune its learning rate hyperparameter over the powers of 10: {10−4, . . . , 102}
and present the best performance averaged across 3 random seeds in Table 6. We observe that
NGN-D performs similarly to RMSprop. NGN-D has slightly worse performance on (LSTM, PTB)
dataset but significantly better on (LSTM, Wikitext-2) workload. Besides, Adagrad always has
the worst performance. Moreover, these algorithms do not have high resilience to the choice of
hyperparameter. Therefore, we omit their comparison from this perspective.

J.9 Effective Step-size of NGN-M, Momo, NGN-MDv1, and Momo-Adam

Next, we compare the effective step-size applied throughout the training with NGN-M, Momo, NGN-
MDv1, and Momo-Adam in Figures J.9 and J.10. First, both NGN-M and Momo perform a warm-up
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Figure J.3: Stability performance of algorithms supporting momentum and diagonal step-size vary-
ing step-size hyperparameter (c for NGN-MDv1 and NGN-MDv2, α0 for Momo-Adam, and step-size
for Adam). We observe that NGN-MDv1 achieves the training loss close to the best possible for a
wider range of the step-size hyperparameter.

in the beginning: the effective step-size increases at the beginning of the training. Then we observe
the main difference between the two algorithms above: effective step-size of Momo for sufficiently
large step-size hyperparameter is not adaptive within some part of the training, it always hits the
upper bound. Consequently, during that part of the training Momo reduces to SGDM. In contrast,
the effective step-size of NGN-M is always adaptive: it gradually decreases after a short warm-
up. This trend is similar to the state-of-the-art learning rate schedulers used in practice. Similar
observations can be made in comparison of NGN-MDv1 and Momo-Adam.

J.10 Effective Updates in Training Language Models

In this section, we demonstrate the magnitude of updates when training 160M language model
with Adam and NGN-MDv1 and varying the step-size hyperparameter across different layers of
the model: see the results in Figures J.11 to J.13. We demonstrate that NGN-MDv1 is a more
conservative algorithm: the effective update is smaller than that of Adam due to the adaptive
nature of the step-size. This is especially evident when training 160M language model with a step-
size hyperparameter 0.03: The updates of Adam become considerably larger than the update of
NGN-MDv1. This property is a key factor behind the difference in training dynamics: NGN-MDv1
can stabilize at a significantly lower training loss.

J.11 Training Dynamics in Training Language Models

Now we report the training dynamics in the training language across all tested sizes.

J.12 Ablation Study of Momentum Parameters

In this section, we study the sensitivity of NGN-MDv1 and Adam to the choice of the learning rate
and momentum hyperparameters, when training 70M language model on FineWeb dataset [Penedo
et al., 2024]. To do that, we fix β1 = 0.9 (or β2 = 0.95) and make a sweep over the learning
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Figure J.4: Stability performance of algorithms supporting momentum (first row), and momentum
with diagonal step-size (second row) varying step-size hyperparameter (c for NGN, NGN-M, NGN-
MDv1, and NGN-MDv2, α0 for Momo and Momo-Adam, and step-size for SGD, SGDM, and Adam).

Table 7: Test perplexity of NGN-MDv1 when
varying the learning rate and β1 hyperparame-
ters when training 70M language model on the
FineWeb dataset.

lr β1 = 0.6 β1 = 0.8 β1 = 0.9 β1 = 0.99

3e-4 49.9± 0.2 47.4± 0.2 47.0± 0.2 49.7± 0.3

1e-3 41.5± 0.2 39.9± 0.2 38.6± 0.1 40.2± 0.3

3e-3 40± 1 36.9± 0.3 35.9± 0.1 37.2± 0.1

1e-2 54± 16 37± 2 34.7± 0.3 35.9± 0.1

3e-2 278± 6 129± 2 34.6± 0.1 35.6± 0.1

Table 8: Test perplexity of Adam when varying
the learning rate and β1 hyperparameters when
training 70M language model on the FineWeb
dataset.

lr β1 = 0.6 β1 = 0.8 β1 = 0.9 β1 = 0.99

3e-4 49.4± 0.2 46.5± 0.1 46.2± 0.3 57± 1

1e-3 41.4± 0.2 39.6± 0.1 38.5± 0.1 45.0± 0.2

3e-3 40.7± 0.1 37.0± 0.1 36.0± 0.1 220± 70

1e-2 160± 60 41± 2 36± 2 210± 110

3e-2 420± 20 340± 50 320± 60 330± 130

rate hyperparameter and β2 (or learning rate hyperparameter and β1). We report the final test
perplexity averaged over 3 runs for each set of hyperparameters.

We summarize our findings from Table 7, Table 8, Table 9, and Table 10 as follows:

• Low lr (3e-3): NGN-MDv1 and Adam show similar sensitivity to changes in both β1 and β2.

• Moderate lr (1e-2): NGN-MDv1 is noticeably more robust than Adam to extremes of β1, while
both optimizers perform similarly across β2 (though Adam’s performance degrades slightly at
β2 = 0.999).

• High lr (3e-2): Both methods suffer when β1 is small (or β2 is large), but NGN-MDv1 recovers
lower perplexity at larger β1 values (smaller β2 values), whereas Adam fails to reach comparable
performance.

To conclude, NGN-MDv1 demonstrates greater robustness to changes in momentum parameters
at high lr, and consistently attains lower perplexity than Adam, even when both methods’ perfor-
mance deteriorates (we refer to the cases when both algorithms cannot achieve perplexity around
50).
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Figure J.5: Stability performance of various optimizers for (Resnet20, CIFAR10), (Resnet110, CI-
FAR100), (ViT, CIFAR10) workloads.

Table 9: Test perplexity of NGN-MDv1 when
varying the learning rate and β2 hyperparame-
ters when training 70M language model on the
FineWeb dataset.

lr β2 = 0.6 β2 = 0.8 β2 = 0.9 β2 = 0.95 β2 = 0.999

3e-4 51.8± 0.6 49.2± 0.4 47.8± 0.3 47.0± 0.2 47.0± 0.2

1e-3 42.6± 0.3 40.5± 0.1 39.3± 0.2 38.6± 0.1 38.9± 0.1

3e-3 39.4± 0.2 37.5± 0.2 36.3± 0.1 35.9± 0.1 36.5± 0.4

1e-2 37.8± 0.2 35.9± 0.1 35.1± 0.3 34.7± 0.3 35.0± 0.3

3e-2 37.8± 0.3 35.8± 0.1 34.9± 0.1 34.6± 0.1 250± 50

Table 10: Test perplexity of Adam when varying
the learning rate and β2 hyperparameters when
training 70M language model on the FineWeb
dataset.

lr β2 = 0.6 β2 = 0.8 β2 = 0.9 β2 = 0.95 β2 = 0.999

3e-4 46.1± 0.2 46.6± 0.1 46.5± 0.2 46.2± 0.3 46.5± 0.1

1e-3 38.8± 0.1 39.0± 0.2 38.9± 0.1 38.5± 0.1 39.5± 0.6

3e-3 38.8± 0.3 36.3± 0.1 36.1± 0.2 36.0± 0.1 36.7± 0.8

1e-2 35.4± 0.2 35.0± 0.1 34.9± 0.3 36± 2 41± 3

3e-2 550± 250 120± 80 160± 5 210± 60 500± 20
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Figure J.6: The adaptive stepsize of Adam (first column), Momo-Adam (second column), and
NGN-MDv1 (third column) algorithms in training ResNet20 model on CIFAR10 dataset. We plot
the average stepsize γ

(Dk)(j)
(for Adam), τk

(Dk)(j)
(for Momo-Adam), and γk

(Dk)(j)
(for NGN-MDv1) for

the first convolution layer within each of 3 base blocks of ResNet20 architecture varying the step-
size hyperparameter of the algorithms (c for NGN-M and NGN, α0 for Momo, and learning rate
parameter for Adam).
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Figure J.7: The adaptive stepsize of Adam (first column), Momo-Adam (second column), and
NGN-MDv1 (third column) algorithms in training ViT model on CIFAR10 dataset. We plot the
average stepsize γ

(Dk)(j)
(for Adam), τk

(Dk)(j)
(for Momo-Adam), and γk

(Dk)(j)
(for NGN-MDv1) for the

attention layer within each of the first, fourth, and sixth base blocks of ViT architecture varying
the step-size hyperparameter of the algorithms (c for NGN-M and NGN, α0 for Momo, and learning
rate parameter for Adam).
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Figure J.8: Stability performance of algorithms supporting momentum and diagonal step-size vary-
ing step-size hyperparameter (c for NGN-M and NGN, α0 for Momo, and step-size for SGDM). We
observe that NGN-M achieves the training loss close to the best possible for a wider range of the
step-size hyperparameter.
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Figure J.9: The step-size of Momo and NGN-M during the training. We demonstrate the step-sizes
τk for Momo and γk for NGN-M varying step-size parameters α0 for Momo and c for NGN-M.
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Figure J.10: The step-size of Momo-Adam and NGN-MDv1 during the training. We demonstrate
the step-sizes τk for Momo-Adam and γk for NGN-MDv1 varying step-size parameters α0 for Momo
and c for NGN-MDv1.
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Figure J.11: Magnitude of updates when training 160M language model with Adam and NGN-MDv1
and step-size hyperparameter 0.003.

56



0 1000 2000 3000 4000 5000
Step

3

4

5

6

7

8

Tr
ai

ni
ng

 L
os

s

Training Loss

0 1000 2000 3000 4000 5000
Step

0.0

2.5

5.0

7.5

10.0

12.5

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Embedding Weight

0 1000 2000 3000 4000 5000
Step

0

1

2

3

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Layer 1 Attention QKV Proj

0 1000 2000 3000 4000 5000
Step

0

1

2

3

4

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Layer 1 MLP In Proj

0 1000 2000 3000 4000 5000
Step

0

1

2

3

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Layer 1 MLP Out Proj

0 1000 2000 3000 4000 5000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Layer 7 Attention QKV Proj

0 1000 2000 3000 4000 5000
Step

0

1

2

3

4

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Layer 7 MLP In Proj

0 1000 2000 3000 4000 5000
Step

0.0

0.5

1.0

1.5

2.0

2.5

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Layer 7 MLP Out Proj

0 1000 2000 3000 4000 5000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Layer 12 Attention QKV Proj

0 1000 2000 3000 4000 5000
Step

0

1

2

3

4

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Layer 12 MLP In Proj

0 1000 2000 3000 4000 5000
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

Layer 12 MLP Out Proj

0 1000 2000 3000 4000 5000
Step

0.0

2.5

5.0

7.5

10.0

12.5

E
ff

ec
tiv

e 
U

pd
at

e 
N

or
m

LM Head

Optimizer
Adam NGN-MDv1

Figure J.12: Magnitude of updates when training 160M language model with Adam and NGN-MDv1
and step-size hyperparameter 0.01.
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Figure J.13: Magnitude of updates when training 160M language model with Adam and NGN-MDv1
and step-size hyperparameter 0.03.
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Figure J.14: Training dynamics when training language model at different sizes.
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