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Abstract

Federated learning faces severe communication bottlenecks due to the high dimensionality of
model updates. Communication compression with contractive compressors (e.g., Top-K) is of-
ten preferable in practice but can degrade performance without proper handling. Error feedback
(EF) mitigates such issues but has been largely restricted for smooth, unconstrained problems,
limiting its real-world applicability where non-smooth objectives and safety constraints are crit-
ical. We advance our understanding of EF in the canonical non-smooth convex setting by es-
tablishing new lower complexity bounds for first-order algorithms with contractive compression.
Next, we propose Safe-EF, a novel algorithm that matches our lower bound (up to a constant)
while enforcing safety constraints essential for practical applications. Extending our approach
to the stochastic setting, we bridge the gap between theory and practical implementation. Ex-
tensive experiments in a reinforcement learning setup, simulating distributed humanoid robot
training, validate the effectiveness of Safe-EF in ensuring safety and reducing communication
complexity.

1 Introduction
Federated learning is a crucial framework for training machine learning models across distributed
environments [Konečný et al., 2016, Kairouz, 2019], where data is naturally stored in a distributed
fashion. Formally, such problems can be expressed as

min
x∈X

f(x) := 1
n

n∑
i=1

fi(x), (1)

where n represents the number of workers or machines participating in the training, and x ∈ Rd

denotes the model parameters to be optimized. The function fi : Rd → R is the local (possibly
non-smooth) loss associated with data on worker i ∈ [n] := {1, . . . , n}, and X is a subset of Rd.

This paradigm is particularly valuable in privacy-sensitive and resource-constrained settings,
where data remains decentralized, and collaboration is achieved without requiring direct data shar-
ing. For instance, consider a fleet of robots that operate in homes [Kalashnikov et al., 2018, Brohan
et al., 2022]. In such settings, traditional centralized learning approaches are impractical, as trans-
mitting raw sensory data from each robot to a central server would pose severe privacy risks and
require enormous bandwidth. Furthermore, these robots must adapt to diverse household environ-
ments, necessitating personalized learning while still benefiting from collective experience across
the fleet. Despite its advantages, distributed training faces significant communication bottlenecks
due to the high dimensionality of model updates. This challenge necessitates the development of
communication-efficient algorithms.

Communication compression with Top-K. One prominent strategy to reduce communication
costs is the communication compression technique, which applies possibly randomized compression
to updates prior to transmission. One of the most practical and versatile classes of compression
operators are those that satisfy the contractive property:

This work has been accepted to ICML 2025.
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E
[
∥C(x)− x∥2

]
≤ (1− δ)∥x∥2 for all x ∈ Rd,

where δ ∈ (0, 1] represents the accuracy of the compression. Prominent examples are Top-K
sparsifier that preserves K largest components of vector x in magnitude, and random sampling
methods such as Rand-K that preserves a subset of K components of x chosen uniformly at
random. Although both Top-K and Rand-K are contractive with δ ≥ K/d, methods utilizing
Top-K operator are often empirically superior due to their greedy nature [You et al., 2016].

Non-smooth challenges. The majority of works focusing on communication compression as-
sume that the objective function is smooth, i.e., differentiable with Lipschitz continuous gradient,
simplifying theoretical analysis [Stich et al., 2018, Richtárik et al., 2021]. However, this assumption
limits the applicability of developed methods to many real-world problems, where non-smooth func-
tions frequently arise. For instance, consider problems involving ReLU activations [Glorot et al.,
2011] or clipped objectives such as those in proximal policy optimization [PPO, Schulman et al.,
2017]. This motivates the first key question of our study:

Question 1: What are the limits of compressed gradient methods in the non-smooth regime?

To illustrate the challenges of designing meaningful methods with contractive compressors like
Top-K, we present a non-convergence example for vanilla compressed gradient descent (CGD) in
the non-smooth setting. Consider

CGD xt+1 = xt − γ

n

n∑
i=1
C(f ′

i(xt)), (2)

where f ′
i(xt) ∈ ∂fi(xt) is a subgradient of fi and γ ≥ 0 is a stepsize.

Example 1. For any n ≥ 1, there exists a specific instance of problem (1) where X = R2, and
f(x) = ∥x∥1 is non-smooth, convex, and 1-Lipschitz continuous. For this instance, with some initial
vector x0 ∈ R2, the iterates of CGD (2) applied with the Top-1 compressor and any stepsize γ ≥ 0,
satisfy

f(xt)−min
x

f(x) = 1 + γ

2 for any t ≥ 0.

This example implies that running vanilla CGD with the Top-1 compressor even on a simple
non-smooth problem may yield no improvement. It is remarkable that this failure occurs even in the
identical data regime fi = f for all i ∈ [n], the setting where CGD is known to converge in smooth
case [Nesterov, 2012, Nutini et al., 2015, Beznosikov et al., 2023]. The idea of the construction
in Example 1 is that due to a rapid change of the gradients f ′ in consecutive iterations, CGD
consistently ignores the direction of the second component of xt, which results in a pathological
cyclic behavior. See Figure 1 for an illustration.

Error feedback can make things worse! A common remedy for non-convergence issues of
compressed gradient methods is error feedback (EF), a mechanism that has inspired several variants
Seide et al. [2014], Richtárik et al. [2021], Fatkhullin et al. [2024], Gao et al. [2024]. Among these,
EF21 is a recent approach with state-of-the-art performance guarantees in smooth optimization due
to Richtárik et al. [2021]:

EF21
xt+1 = xt − γ vt, vt = 1

n

n∑
i=1

vt
i ,

vt+1
i = vt

i + C(f ′
i(xt+1)− vt

i).
(3)

where f ′
i(xt+1) ∈ ∂fi(xt+1) is a subgradient of fi and vt

i is a local gradient estimator at each worker.
While Richtárik et al. [2021] only analyze this algorithm in the smooth non-convex case, we extend
its analysis to smooth convex setup in Appendix C. However, we show that, surprisingly, EF21 fails
to converge on the same problem as CGD.
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Figure 1: Non-convergence of CGD, divergence of EF21 and convergence of Safe-EF for the problem
f(x) = ∥x∥1, i = 1, d = 2 used in the proofs of Examples 1 and 2 with Top-1 compressor. We run
all algorithms for T = 103 iterations with x0 = (γ/2,−1)⊤, γ = 1/

√
T , and v0 = (1, 1)⊤ (for EF21).

⋆Safe-EF coincides with EF14 [Seide et al., 2014] in this example.

Example 2. Consider the problem instance from Example 1. For this instance, with some initial
vectors x0, v0 ∈ R2, the iterates of EF21 (3) applied with the Top-1 compressor and any stepsize
γ ≥ 0 satisfy

f(xt)−min
x

f(x) = 1 + γ

2 + t γ for any t ≥ 0.

This example shows that EF21 does not converge for non-smooth problems despite achieving an
excellent performance in smooth case, see Theorem 4, and reaching the optimal iteration complexity
in smooth non-convex optimization Huang et al. [2022]. Moreover, if we pick the classical stepsize
γ = 1/

√
T , EF21 diverges from the optimum with a rate Ω(t/

√
T ) ≈

√
T for t ≈ T , which is

even worse than CGD. We show the divergence in Figure 1, where we also observe that another
EF variant, EF14, [Seide et al., 2014] converges without problems. We find such stark difference
surprising in light of the equivalence of EF21 and EF14, established under additivity assumption of
C [Richtárik et al., 2021]. The catch is that Top-1 is not additive, and thus the equivalence does
not hold here.

Motivated by this fairly toy example, we find it important to understand
error feedback in non-smooth setup, and aim to study EF14.

Safety considerations. In addition to these challenges, safety constraints play a critical role in
real-world applications [Altman, 1999]. Ensuring solutions satisfy feasibility requirements is essen-
tial, particularly in scenarios like federated reinforcement learning (FedRL) [Nadiger et al., 2019,
Qi et al., 2021, Jin et al., 2022]. Despite their importance, constrained optimization with commu-
nication compression remains under-explored. Although some work develop methods assuming X
is simple, i.e., using projection [Fatkhullin et al., 2021] or linear minimization [Nazykov et al., 2024]
oracles, they crucially rely on smoothness. Moreover, the applications in Safe FedRL motivate us
to pay attention to problems with more complex constraints of the form

X :=
{

x ∈ Rd | g(x) := 1
n

∑n
i=1 gi(x) ≤ 0

}
, (4)

where gi : Rd → R defines a constraint for worker i.

Question 2: Can we design a provably convergent compressed gradient method with a
Top-K compressor for non-smooth constrained problems?

Perhaps, the most common approach to solve (1) with (4) in non-distributed optimization
(n = 1) is to reformulate it as a saddle point problem, which is then solved by primal-dual meth-
ods [Nemirovski, 2004, Hamedani and Aybat, 2021]. This approach is popular in practice Ding
et al. [2020], Moskovitz et al. [2023], Ding et al. [2024], Müller et al. [2024] and has rich theory,

Our Safe-EF method presented in Algorithm 1 reduces to EF14 in unconstrained setting with C0 = Id.
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e.g., [Boob et al., 2023, Boob and Khalafi, 2024, Zhang and Lan, 2022]. However, such methods
have several limitations. First, they are known to be sensitive to the tuning of the initial dual
variable (e.g., the experiments and discussion in Appendix G) and often require an estimate of
the upper bound of the optimal dual variable. Second, their theoretical justification often requires
projecting both primal and dual variables onto an unknown bounded set, which is not aligned with
practical implementations. In the context of EF-type methods, this projection requirement implies
several algorithmic and technical challenges because only certain smooth variants of EF seem to
be compatible with projection, e.g., [Fatkhullin et al., 2021]. An alternative is to adopt a primal
only approach, e.g., switching subgradient Polyak [1967], Lan and Zhou [2020], Ma et al. [2020],
Huang and Lin [2023], Jia and Grimmer [2022], methods based on the velocity field [Yu et al., 2017,
Muehlebach and Jordan, 2022, Schechtman et al., 2022, Kolev et al., 2024], or level-set methods
[Lin et al., 2018, Boob et al., 2024]. Primal methods have also been used in (non-distributed) RL
applications, e.g., Xu et al. [2021], Chen et al. [2021], Jordan et al. [2024], Li et al. [2024]. The
key advantage of such primal schemes is their simplicity and convergence under mild assumptions
without the need for the estimation of dual variables.

2 Contributions
• First, we establish a Ω

(
MR√

δT

)
convergence lower bound for non-smooth convex distributed

optimization with contractive compressors for function suboptimality gap and a constraint
violation. Here T is the iteration count, R is the initial distance to the optimum, M bounds
the norm of subgradients of fi, and δ ∈ (0, 1] is the compression accuracy.

• Next, we propose Safe-EF (Algorithm 1), an extension of EF14 Seide et al. [2014] incorpo-
rating safety constraints (4) and bidirectional compression including the workers to server
compressor C0. Safe-EF provably works in non-smooth distributed settings and efficiently
minimizes the objective function, while controlling the constraint violation. We prove the
convergence rate of Safe-EF matching the above-mentioned lower bound up to a numerical
constant under a constant accuracy of the server compression C0. It seems our upper bound
is new even when g(x) ≡ 0 and C0 = Id.

• We further study Safe-EF in practically relevant stochastic scenarios, where exact subgradi-
ents and function evaluations are unavailable and need to be estimated. We establish high
probability bounds with a mild logarithmic dependence on failure probability, which is sig-
nificant even without compression, since our bounds feature the distance to the optimum R
instead of the diameter of the set, which is not bounded in our set-up.

• Finally, we conduct extensive experiments and ablation studies of Safe-EF, putting the method
to the test on a challenging task of distributed humanoid robot training and providing im-
portant practical insights into the performance of non-smooth EF methods.

3 Assumptions and Communication Protocol
We consider distributed constrained optimization problem (1) with a constraint (4), and denote the
optimal solution to this problem by x∗. Unless specified otherwise, we denote by ∥ · ∥ the Euclidean
norm in Rd.

Assumption 1. We assume that fi and gi are convex for all i ∈ [n], namely, for all x, y ∈ Rd we
have

fi(y) ≥ fi(x) + ⟨f ′
i , y − x⟩ ∀f ′

i ∈ ∂fi(x), gi(y) ≥ gi(x) + ⟨g′
i, y − x⟩ ∀g′

i ∈ ∂gi(x). (5)

Each worker i has access to the oracles Ofi,i(x) and Ogi,i(x), which return the subgradients
f ′

i ∈ ∂fi(x), g′
i ∈ ∂gi(x), and the function values fi(x), gi(x) respectively for any x ∈ Rd. We assume

bounded subgradient, which is a common assumption in non-smooth optimization [Nesterov et al.,
2018]
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Assumption 2. We assume that fi and gi have M -bounded subgradients, i.e. for any x ∈ Rd and
i ∈ [n] we have

max
{
∥f ′

i(x)∥, ∥g′
i(x)∥

}
≤M. (6)

We let the function classes FR,M and GRM denote the set of all functions satisfying Assump-
tions 1-2 for any underlying dimension d and a given initialization x0 ∈ Rd such that ∥x0−x∗∥ ≤ R.
We denote by HR,M the class of problems of form (1), (4), where functions {fi}ni=1 and {gi}ni=1 are
taken from FR,M and GR,M respectively.

Compression operators. We focus on the class of algorithms using contractive compressors.

Definition 1. We say that a (possibly randomized) mapping C : Rd → Rd is a contractive com-
pression operator if for some constant δ ∈ (0, 1] it holds

E
[
∥C(x)− x∥2

]
≤ (1− δ)∥x∥2. (7)

Beyond Top-K and Rand-K mentioned in Section 1, examples satisfying (7) include sparsifi-
cation [Alistarh et al., 2018, Stich et al., 2018, Islamov et al., 2021] and quantization [Wen et al.,
2017, Bernstein et al., 2018, Horváth et al., 2022, Compagnoni et al., 2025] techniques, and low-
rank approximations [Vogels et al., 2019, Qian et al., 2021a, Islamov et al., 2023]. We refer to
[Beznosikov et al., 2023, Safaryan et al., 2021] for further examples. We denote by C(δ) the set of
all δ-contractive compressors.

Algorithm class. We follow Huang et al. [2022] to introduce the class of algorithms of interest.
We consider a centralized and synchronous algorithm A, where: i) workers are restricted to commu-
nicating directly with a central server and cannot exchange information with one another directly;
ii) all iterations are synchronized, meaning all workers begin each iteration simultaneously. In this
setup, each worker i maintains a local copy of the model, denoted as xt

i, at iteration t. The output
x̂t of the algorithm A after t iterations can be expressed as any linear combination of all previous
local models, namely,

x̂t ∈ span ({xs
i : 0 ≤ s ≤ t, 1 ≤ i ≤ n}) . (8)

We additionally require that the algorithm A satisfies the “zero-respecting” property [Carmon et al.,
2020, Lu and De Sa, 2021]. This ensures that the number of non-zero entries in a worker’s local
model can only increase through local subgradient queries, or synchronization with the central
server. This property is upheld by a broad range of existing distributed optimization algorithms
[Tang et al., 2019, Xie et al., 2020, Richtárik et al., 2021, Gao et al., 2024]. In addition to these
properties, the algorithm A must support communication compression. To achieve this, each worker
i ∈ [n] is equipped with a compressor Ci. The formal definition of this algorithm class with worker
to server compression is provided below, see Appendix E for details.

Definition 2. Given compressors {C1, . . . , Cn}, we denote AU
{Ci}n

i=1
as the class of all centralized,

synchronous, zero-respecting algorithms that support unidirectional compression, where compressor
Ci, i ∈ [n], is applied to messages from worker i to the server.

4 Main Results
We start by presenting our first main contribution, which is the lower iteration/communication
complexity bound for a class of first-order compressed gradient methods.

4.1 Lower Bound

Given a problem h := ({fi}ni=1, {gi}ni=1) ⊆ HR,M , subgradient/function value oracles {Ofi,i}ni=1,
{Ogi,i}ni=1, compressors {Ci}ni=1 ⊆ C(δ), and an algorithm A ∈ AU

{Ci}n
i=1

, let x̂A,T := x̂A,{fi}n
i=1,{gi}n

i=1,{Ci}n
i=1,T

5



represent the output of algorithm A after at most T oracle queries and communication rounds per
worker. We define the minimax convergence measure

inf
A

sup
{Ci}n

i=1

sup
h∈HR,M

{E [f(x̂A,T )− f(x∗)] , E [g(x̂A,T )]} .

We do not require operators {Ci}ni=1 to be neither distinct nor independent, and parameter δ can be
utilized by the algorithm A. Our first contribution is the lower bound for algorithms that support
unidirectional compression.

Theorem 1. For any R, M > 0, n ≥ 2, δ ≤ 0.3, T ≥ δ−2 there exists a problem h ⊆ HR,M , oracles
{Ofi,i}ni=1, {Ogi,i}ni=1, compressors {Ci}ni=1 ⊆ C(δ), and the starting point x0 = 0 such that for any
first-order algorithm A ∈ AU

{Ci}n
i=1

run for T ≤ d iterations from x0, satisfies

E [f(x̂A,T )− f(x∗)] ≥ Ω
(

RM√
δT

)
, and

E [g(x̂A,T )] ≥ Ω
(

RM√
δT

)
.

(9)

When δ = 1 and g ≡ 0, indicating no compression and no constraints, (9) recovers the classical
lower bounds for non-smooth convex optimization [Nemirovskij and Yudin, 1983, Nemirovski, 1994,
Nesterov, 2014, Braun et al., 2017, Scaman et al., 2018]. However, when worker to server com-
pression is large, the convergence rate degrades by a factor of 1/

√
δ. Similar degradation appears

in the constraint violation. An interesting implication of Theorem 1 is that the convergence rate
does not improve when increasing the number of workers n, which is different from prior work in
smooth stochastic optimization Huang et al. [2022], He et al. [2023]. The key idea of the proof is
to extend and modify the “worst-case” function from [Nesterov, 2014] and account for compression
in the distributed setting, specifically, we use for all i ∈ [n]

fi(x) := C · max
1≤j≤T

xj + µ

2 ∥x∥2 ·max
{
∥x∥2; R

2

}
,

gi(x) := fi(x)− min
x∈Rd

fi(x),

where C, µ > 0 are some constants depending on the bound of subgradients M and the compression
level δ. We refer to Appendix E for the formal proof.

4.2 Safe-EF Method

In this section, we describe Safe-EF, our main algorithm detailed in Algorithm 1, which addresses
two main challenges simultaneously: handles non-smoothness and constraints. The distinct feature
of our method is a dynamical switch between the subgradients of the objective fi and those of
the constraints gi depending on if the constraint violation exceeds a predefined threshold c. To
implement this, workers compute the constraint violations gi(xt) and communicate them to the
server. This process does not increase communication overhead, as it requires transmitting only a
single float per iteration. Equipped with this switching rule, we use EF14 [Seide et al., 2014] type
updates to limit the communication overhead of sub-gradients from workers to server. Furthermore,
we additionally enhance Safe-EF with server to workers compression using a “primal” EF21 variant,
EF21-P, due to Gruntkowska et al. [2023], which compresses the difference between two estimates
of the model parameters wt+1 and xt.

In fact, it was noted by Gruntkowska et al. [2023] that a pure EF21-P used at the server level can be reformulated
as EF14 on the worker level. However, we only use EF21-P formulation for algorithmic presentation and design the
convergence proof using EF14 formulation.
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Algorithm 1 Safe-EF with bidirectional compression
1: Input: w0 = x0, {Ci}ni=1, γ, c > 0, e0

i = 0
2: for t = 0, . . . , T − 1 do
3: for i = 1, . . . , n in parallel do
4: Send gi(xt) to server ▷ cheap one float comm.
5: end for
6: Send g(xt) = 1

n

∑n
i=1 gi(xt) to workers

7: for i = 1, . . . , n in parallel do
8: Compute ht

i = f ′
i(xt) if g(xt) ≤ c else g′

i(xt)
9: Send vt

i = Ci(et
i + ht

i) to server
10: Compute et+1

i = et
i + ht

i − vt
i

11: end for
12: Compute vt = 1

n

∑n
i=1 vt

i and wt+1 = wt − γvt

13: Compute xt+1 = xt + C0(wt+1 − xt)
14: Send C0(wt+1 − xt) to workers
15: end for

4.3 Convergence Upper Bound

In our next theorem, we provide the convergence guarantees for Safe-EF summarized in Algorithm 1.
The set B denotes all iteration counters when the constraint violation is below the threshold c, i.e.,

B :=
{

t ∈ [T − 1] | g(xt) ≤ c
}

.

Theorem 2. Assume Assumptions 1-2 hold, the server and workers use compressors C0 ∈ C(δs), {Ci}ni=1 ⊆
C(δ). Then there exist a choice of stepsize γ and threshold c such that the iterates of Safe-EF with
bidirectional compression satisfy

E
[
f(xT )− f(x∗)

]
≤ O

(
RM√
δsδT

)
, and

E
[
g(xT )

]
≤ O

(
RM√
δsδT

)
,

(10)

where xT := 1
|B|
∑

t∈B xt.

The proof of the theorem is detailed in Appendix D, where we also give explicit choice of γ and
c. Next, we discuss the obtained result in several special cases as well as the main difficulties in
the convergence proof.

Single-node training with no compression. In the special case where n = 1 and δs = δ =
1, corresponding to the non-distributed setting without compression, (10) recovers the rates in
[Nesterov et al., 2018, Lan and Zhou, 2020].

No constraints, i.e., g ≡ 0, and C0 ≡ Id. In this case, our algorithm, Safe-EF, simplifies to
the well-known EF14 method [Seide et al., 2014]. EF14 was previously analyzed in the non-smooth
setting for single-node training (n = 1) by Karimireddy et al. [2019]. Theorem 2 extends the
analysis to the distributed setup. Notably, the convergence rate is consistent with that presented
in their work in this special case.

Unidirectional compression. Next, we consider the setting with unidirectional compression,
i.e., δs = 1 and C0 ≡ Id. We observe that both the functional suboptimality gap and constraint
violation diminish at a rate of O(1/

√
δT), consistent with the lower bound established in Theorem 1,

thereby confirming the optimality of Safe-EF assuming δs is a numerical constant independent of d
and K.

7



Bidirectional compression. Now we discuss the setting when the compression is applied in
both directions. It is worth noting that most prior studies focus on a more restricted class of com-
pressors, such as absolute compressors [Tang et al., 2019] or unbiased compressors [Philippenko and
Dieuleveut, 2021, Gruntkowska et al., 2023, 2024, Tyurin and Richtarik, 2023], in the bidirectional
setting. In contrast, our work does not impose any additional constraints on the compressors.
Other related work considers only server to worker compression [Sokolov and Richtárik, 2024],
while often compression in both directions is important. The convergence rate in (10) highlights a
slowdown by a factor of

√
δsδ, which aligns with similar dependencies observed in prior works on

smooth distributed optimization [Fatkhullin et al., 2021]. It remains an open question whether the
dependence on the compression levels δ and δs can be improved in the non-smooth setting. Perhaps,
this dependency could potentially be reduced from

√
δsδ to

√
δ +
√

δs by incorporating multiple
communication rounds per iteration, similar to the approach in [Huang et al., 2022]. However,
this procedure can be impractical since ⌈K/δs⌉ coordinates are communicated at every iteration as
observed in [Fatkhullin et al., 2024], and we leave the study of this strategy for future work.

Key theoretical challenges. We emphasize that controlling constraints significantly compli-
cates the analysis compared to prior work [Karimireddy et al., 2019], which is limited to the
unconstrained, unidirectional, non-distributed setting. A key novelty of our analysis lies in demon-
strating that an appropriate choice of the stepsize γ and threshold c ensures that the number of
iteration counters in B with constraint violations below c is sufficiently large to guarantee progress
in reducing functional suboptimality. In particular, it is not empty and thus xT is well-defined.

Communication complexity with Top-K. In a unidirectional case with Ci is Top-K and
C0 ≡ Id, the total communication complexity is

K︸︷︷︸
floats per iteration

× R2M2

δε2︸ ︷︷ ︸
# iterations

≤ KR2M2

K
d ε2 = dR2M2

ε2 , (11)

where we utilize the condition δ ≥ K
d for Top-K. This finding indicates that the communication

complexity of Safe-EF aligns with that of parallel switching subgradient method (Safe-EF without
compression) in the worst-case scenario. However, an improvement is possible when δ > K

d , which
occurs if the entries differ substantially in magnitude [Beznosikov et al., 2023].

Key Steps of the Proof. Our convergence proof builds on the “virtual iterates” construction
of Stich and Karimireddy [2019] (see Equation (22)). In Lemma 1, we then derive a unified bound
controlling both the function sub-optimality and the constraint violation. Crucially, by enforcing
appropriate choices of the step size γ and threshold c, we show that this bound can be made
small enough. The same lemma also guarantees that after T iterations, either the number of
approximately feasible points are at least |B| ≥ T

2 or the sub-optimality is already below the
desired tolerance. Together with the preliminary lemma on the virtual iterates, this yields our full
convergence theorem for Safe-EF. Finally, in Corollary 1 we verify that the stipulated conditions
on γ and c are indeed feasible.

5 Extension to Stochastic Setting
In this section, we consider a stochastic formulation of our the problem (1), (4), namely,

fi(x) := Eξi∼Di

[
fi(x, ξi)

]
, (12)

and
gi(x) := Eξi∼Di

[
gi(x, ξi)

]
, (13)

We omit the numerical constants and logarithmic factors in comparison.
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where Di is a distribution of local environment (dataset) at worker i ∈ [n]. We assume that the
noise follows a sub-Gaussian distribution.
Assumption 3. Workers have access to M -bounded stochastic subgradients and σ2

fv/Nfv-sub-Gaussian
function evaluations of gi, namely, for some M, σ2

fv/Nfv > 0, any x ∈ Rd, and any i ∈ [n] we have

∥f ′
i(x, ξi)∥2, ∥g′

i(x, ξi)∥2 ≤M2, (14)

E

[
exp

(
(gi(x, ξi)− gi(x))2

σ2
fv/Nfv

)]
≤ exp(1), (15)

where ξi is a sample from the local dataset Di. The latter assumption on sub-Gaussian function
evaluation can be satisfied by implemented a mini-batch estimation of the constraints with batch-
size Nfv. Moreover, we assume that the workers compute subgradients and function evaluations
independently for any given x.
Assumption 4. We assume that for all i ∈ [n] and for all ξi ∈ Di the functions fi(x, ξi) and
gi(x, ξi) are convex, i.e. for all x, y ∈ Rd we have

fi(y, ξi) ≥ fi(x, ξi) + ⟨f ′
i(x, ξi), y − x⟩, (16)

gi(y, ξi) ≥ gi(x, ξi) + ⟨g′
i(x, ξi), y − x⟩, (17)

for all f ′
i(x, ξi) ∈ ∂fi(x, ξi) and g′

i(x, ξi) ∈ ∂gi(x, ξi).
Remark 1. We highlight that in the special (semi-stochastic) case when subgradient evaluations
f ′

i(x, ξi), g′
i(x, ξi) are stochastic, but the constraint evaluation of gi is deterministic, the proof

significantly simplifies, and convergence analysis can be repeated as in Appendix D. However, the
stochastic estimation of constraint violation g(x) poses a significant challenge and we need to use
advanced techniques to conduct high probability analysis.
Theorem 3. Let β ∈ (0, 1/2) be a failure probability and R ≥ ∥x0 − x∗∥. Assume workers use
deterministic compressors {Ci}ni=1 ⊆ C(δ). Then there exists a choice of stepsize γ, threshold c,
and large enough batch-size Nfv ≥ Õ( σ2

fv
nc2 ) such that the iterates of Safe-EF with unidirectional

compression satisfy with probability at least 1− 2β

f(xT )− f(x∗) ≤ O

(MR + σfv√
Nfv

)(1 + log 1
β )

√
δT

 ,

g(xT ) ≤ O

(MR + σfv√
Nfv

)(1 + log 1
β )

√
δT

 . (18)

To achieve ε-accuracy, i.e., f(xT ) − f(x∗), g(xT ) ≤ ε, Safe-EF requires a batch-size of order
Õ (σ2

fv/nε2). The convergence rate matches the lower bound (9) up to numerical and logarithmic
factors. The proof is deferred to Appendix F. One of the key technical challenges of the above result
is that the analysis in the prior (non-distributed) work [Lan and Zhou, 2020] relies on bounded
domain assumption, while the iterates of our algorithm can be potentially unbounded. To address
this issue we use the ideas from [Liu et al., 2023] to establish a strong high probability convergence.
Remark 2. While the iteration (and communication) complexity of the method in the stochastic
setting matches the lower bound up to numerical and logarithmic factors, its sample complexity
is suboptimal. Taking into account the necessity of Õ( 1

ε2 ) batch-size, the sample complexity of
the method becomes Õ( 1

ε4 ). Nevertheless, this complexity is no worse than the one given by non-
distributed gradient switching method [Lan and Zhou, 2020]. We use a different technique to
conduct high probability analysis than Lan and Zhou [2020] because their analysis crucially relies
on bounded diameter assumption, which we do not have in our formulation.
Remark 3. We emphasize that the proof in the stochastic unidirectional setting can be advanced
to the bidirectional setting following the derivations of Theorem 2 and Theorem 3. The convergence
guarantees in the stochastic bidirectional setting matches that in the deterministic up to numerical
and logarithmic factors.
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6 Experiments
Now we test Safe-EF in practice. Below we provide experiments on a simple problem with synthetic
data which satisfies all our assumptions, and later test our approach in more challenging task of
training the Humanoid Robot. We include additional experiments on the classical Cartpole problem
and Neyman-Pearson classification in Appendix H.

6.1 Synthetic Data
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0
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Figure 2: Comparison of Safe-EF against CGD, EF21, EF21M, and EControl on synthetic non-smooth
problem. ⋆Safe-EF coincides with EF14 [Seide et al., 2014] in this problem.

We begin with a simple empirical setup designed to easily verify that all assumptions of Safe-EF
are satisfied. Specifically, we consider the unconstrained problem of the form (1), where fi = ∥Aix−
bi∥1. For this objective, the subgradient f ′

i(x) = A⊤
i sign(Aix−bi) [Beck, 2017]. This choice ensures

that all assumptions required for Safe-EF hold. The data {Ai, bi}ni=1 ⊆ Rd×d × Rd is synthetically
generated, where the parameter s controls the variability across local datasets: smaller values of s
result in matrices Ai that are more similar to each other. We set n = 10, d = 1000, and use the
Top-K compressor with K = d

10 for all algorithms tested. Details of the data generation process
can be found in Appendix I. We compare the proposed Safe-EF with CGD, EF21, EF21M [Fatkhullin
et al., 2024], and EControl [Gao et al., 2024]. For each method, hyper-parameters are tuned (see
Appendix I for details) based on function value after T = 1000 iterations, and performance with
the optimal parameters is shown in Figure 2. Our results indicate that for s ∈ {0.1, 1.0}, Safe-EF
converges faster than all other algorithms. When heterogeneity is large, s = 10.0, EControl is
initially faster; however, Safe-EF catches up with EControl by the end of the training.

6.2 Policy Gradients for Humanoid Robot Fleet

In this suite of experiments, we demonstrate an application of Safe-EF for reinforcement learning.
In this setup, each worker represents a humanoid robot that collects noisy measurements of some
utility and constraint functions, to solve a constrained Markov decision process [Altman, 1999,
CMDP].

Constrained Markov decision processes. We define a CMDP as the tuple (S,A, r, c, p, γ, ρ),
where S describes a state space (e.g. joint positions and velocities) and A describes a set of
admissible actions (e.g. motor torques). The function r : S × A → R describes a reward function
that is ought to be maximized, while c : S×A → R is a cost signal that must remain bounded. The
system dynamics, p, describes a probability distribution over the next state, given a state s ∈ S
and action a ∈ A. States are initially drawn from the distribution ρ, and γ denotes a discounting
factor. In what follows, each robot-worker interacts with a separate CMDP, such that CMDPs
differ only in their dynamics, i.e., each robot collects trajectories from a slightly perturbed pi,
relative to the nominal model p. Collecting trajectories entails carrying out actions determined by
a policy π(a | s), a stochastic mapping from states to actions. The objective and constraint for each
CMDP are defined as J i

r(π) := Eπ,pi

[∑∞
t=0 γtr(st, at)

]
and J i

c(π) := Eπ,pi

[∑∞
t=0 γtc(st, at)

]
where

the expectations are w.r.t. pi, ρ and πx, a policy parameterized by x ∈ Rd.
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Policy gradient. A common approach for policy search is via the class of policy gradient
algorithms [Sutton et al., 1999, Schulman et al., 2017]. In essence, policy gradient algorithms
use Monte Carlo sampling to obtain stochastic gradient estimates of x w.r.t. the objective and
constraints by “rolling out” the policy and measuring the returned rewards and costs along several
trajectories. In our experiments, each worker collects data independently to obtain these estimates,
which are then used to compute the PPO [Schulman et al., 2017] loss

fi(x) = Es,a∼π̄

[
min

{
πx(a | s)
π̄(a | s) Aπ̄

pi
(s, a), clip

(
πx(a | s)
π̄(a | s) , 1− ϵ̃, 1 + ϵ̃

)
Aπ̄

pi
(s, a)

}]
,

where, Aπ̄
pi

denotes the advantage Schulman et al. [2015] in terms of cumulative rewards, for picking
an action compared to expected action of πx, π̄ is the policy with which the trajectory data was
drawn and ϵ̃ is a hyperparameter. Similarly, a surrogate for the constraint gi(x) is given by replacing
rewards with costs when computing the advantage. Crucially, both fi and gi are non-smooth
functions due to clip(x, l, u) := max{l, min{x, u}}.

Setup. Unless specified otherwise, in all our experiments, the default number of workers is
n = 16, compression ratio is K/d = 0.1 with Top-K compression. We parameterize a neural
network policy with d = 0.2M parameters and use a batch size Nfv = 1024 to evaluate fi and
gi. Moreover, we treat the NN parameters as a single “flat” vector when compressing, rather than
performing layer-wise compression. We run all our experiments for 5 random seed initializations
and report the median and a 68% confidence interval when applicable. Empirical estimates of the
objective and constraint are denoted as Ĵr and Ĵc respectively. We use a batch of 128 trajectories
to obtain these estimates. Further details, regarding the perturbations of models, the reward and
cost functions and additional experiments are provided in Appendices H and I.

Experiment 1: Price of communication. We evaluate Safe-EF with Top-K and Rand-K
sparsifiers and compare it with a constrained version of CGD with a Top-K sparsifier. To adapt
CGD to enforce the constraint, we follow the same approach as Safe-EF and use the switching
subgradient method. Figure 3 shows the amount of communication (in gigabytes per worker)
required to reach a fixed performance of Ĵr = 7500 as the compression ratio K/d increases. As
illustrated, both Top-K and Rand-K significantly reduce communication costs compared to CGD,
with Top-K demonstrating the most robust performance across varying compression rates with
about 2000× improvement in communication reduction!
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Experiment 2: Safety. We study the performance of Safe-EF in terms of constraint satisfaction
and compare it against the unsafe error feedback algorithms EF14 [Seide et al., 2014] and EF21
Richtárik et al. [2021]. Additionally, we compare Safe-EF against a parallel variant of CRPO
[Xu et al., 2021], a CMDP solver that enforces constraints via the subgradient switching method.
Our parallel variant of it, indicated as Parallel-CRPO, operates independently on each worker and
transmits parameters x to the server without compression. The results are presented in Figure 4,
where Safe-EF satisfies the constraints with a slight performance reduction, while EF14 violates the
constraint. EF21 diverges, possibly due to non-smoothness of the objective and constraint. Next,
given the same communication budget in gigabytes per worker, Parallel-CRPO fails to converge.
This outcome highlights the non-trivial nature of the task, emphasizing that optimal policies in the
unconstrained case are insufficient to meet the constraints.

Experiment 3: Number of workers. We analyze the performance of Safe-EF under varying
number of available workers and present our findings in Figure 5. Our results reveal two key
observations. First, the convergence rate decreases significantly when the number of workers is very
small. Second, beyond a certain threshold, increasing the number of workers yields diminishing
performance gains. The latter aligns with our theoretical lower bounds in Theorem 6, which
establish that no improvement in n is possible in the worst case.
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Figure 5: Convergence plots for different num-
ber of workers. While increasing the number of
workers helps reduce the communication cost,
the effect becomes less significant as the num-
ber of workers continues to grow.
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Figure 6: Communication required to reach
a desired performance level for different batch
samples Nfv. Beyond a certain batch size, im-
provement diminishes.

Experiment 4: Effect of batch-size. Theorem 3 has a certain requirement of sufficiently large
batch-size Nfv due to constraint estimation process. If this requirement is met, the convergence
rate is improved when increasing Nfv until it reaches the lower bound in Theorem 1. To study
this effect in practice, we vary the batch size Nfv ∈ {256, 512, 1024, 2048, 4096}. Our results in
Figure 6, indicate that by increasing the batch size from Nfv = 1024 to 2048, we can see the
improvement, however, a further increase from Nfv = 2048 to Nfv = 4096 does not yield more
improvement. For smaller batch sizes Nfv ∈ {256, 512}, Safe-EF did not converge, resulting in
non-numeric values, and therefore are not presented in Figure 6. These findings are in line with our
large-batch requirement in Theorem 3 and highlight the need to design algorithms that are robust
to smaller batch sizes—suggesting an important direction for future work.

7 Limitations and Future Work
While we make significant progress in understanding non-smooth EF, there are certain limitations
in our work. First, we assume all functions are convex, while Safe-EF seems to excel even in chal-
lenging, highly non-convex RL tasks. Thus, it is crucial to understand non-convex problems: in
general setting [e.g. Boob et al., 2023, Jia and Grimmer, 2022, Grimmer and Jia, 2025] as well as
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in structured RL problems [e.g. Agarwal et al., 2021, Xu et al., 2021, Lan, 2023, Fatkhullin et al.,
2023a, Barakat et al., 2023]. Second, our noise assumptions are relatively stringent, and can be
potentially relaxed using gradient clipping [Nazin et al., 2019, Gorbunov et al., 2024] or normal-
ization [Hübler et al., 2024] techniques, although this is non-trivial due to constraint estimation.
Finally, our algorithm requires large batch-sizes and is not sample efficient in the stochastic setting
due to constraint estimation, and our experiments indicate it is likely the issue of the algorithm.
Primal-dual approaches [Juditsky et al., 2011, Boob et al., 2023] can be helpful in mitigating this
limitation.
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A Additional Related Work
The Error Feedback (EF) mechanism was initially studied in the single-node setting (n = 1) by
Stich et al. [2018], Alistarh et al. [2017]. Subsequent research extended its analysis to the smooth
convex setting, incorporating additional unbiased compressors [Gorbunov et al., 2020, Stich, 2020,
Qian et al., 2021b]. The EF21 algorithm, introduced by Richtárik et al. [2021], was the first to
establish provable convergence in the large-batch smooth regime without data heterogeneity bounds.
Later, Fatkhullin et al. [2024] removed this large-batch requirement by integrating a momentum
mechanism into the EF21 framework, achieving an optimal asymptotic rate. An extension of EF14,
called EControl, was proposed by Gao et al. [2024], demonstrating convergence in both smooth
convex and non-convex settings while attaining optimal asymptotic complexity. Recent research
has further advanced the analysis of EF, extending it to variational inequalities [Beznosikov et al.,
2022], decentralized communication graphs [Koloskova et al., 2020, Singh et al., 2021, Zhao et al.,
2022, Islamov et al., 2024a], local updates [Huang et al., 2023], bilevel optimization [He et al., 2024],
and reinforcement learning [Mitra et al., 2023, Adibi et al., 2024, Beikmohammadi et al., 2024].
Additionally, Richtárik et al. [2022], Makarenko et al. [2022], Islamov et al. [2023] expanded EF
analysis to a broader class of 3PC compression operators, encompassing contractive compressors as
a special case. Recent works analyzed the EF mechanism as a special case of biased gradient descent
in the single-node setting [Ajalloeian and Stich, 2020, Demidovich et al., 2023] while Richtárik et al.
[2024] improved the constant dependencies in the rate of EF21.

EF21 variant of EF has been analyzed in the context of (L0, L1)-smooth optimization [Khirirat
et al., 2024], which is different from our non-smoothness since (L0, L1)-smoothness implies smooth-
ness on any compact set and failure examples as in Example 2 cannot happen under such assump-
tion. On the other hand, if not limited to compact set the gradients under (L0, L1)-smoothness
can grow when x→∞.
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B Failure of CGD and EF21 in Non-smooth Convex Setting
Proof of Example 1. Non-convergence of CGD.

Proof. Consider a 2-dimensional problem fi(x) = ∥x∥1, f(x) = 1
n

∑n
i=1 fi(x) with f(x∗) = 0. Set

the initial vectors x0 = (γ/2,−1)⊤ and consider CGD (2) with Top-1 compressor.
The proof for the case when γ = 0 is trivial. We consider the case when γ > 0. In this case,

the function is differentiable at every point of its trajectory, and for any t ≥ 0 it holds that

xt =
(

γ(−1)t

2
−1

)
, ∂fi(xt) =

{(
(−1)t

−1

)}
.

The base of induction (t = 0) is trivial. For the induction step, we make the calculation

xt+1 = xt − γgt =
(

γ(−1)t

2
−1

)
− γ Top-1

(
(−1)t

1

)
=
(

γ(−1)t+1

2
−1

)
,

where in the last step, Top-1 operator always selects the first coordinate since the entries are equal
in absolute value. It remains to compute the function value at these iterates f(xt) to conclude the
proof.

We remark that divergence issues of gradient methods using biased compressors were previously
raised in [Karimireddy et al., 2019]. However, their examples only apply to Sign operator, while we
are mainly interested in the behavior of Top-K compressor for distributed optimization. Thus, a
different construction is required to capture the interplay of Top-K compressor with non-smoothness
of f . Another divergence example using Top-K is shown by Beznosikov et al. [2023], however, their
example is smooth, strongly convex and the key effect is different, since their divergence happens
due to heterogeneity. Finally, Fatkhullin et al. [2024] show an example of divergence of EF21 in the
stochastic setting, which is also different since their function is smooth, strongly convex and the
divergence occurs due to noise.

Proof of Example 2. Divergence of EF21.

Proof. Similarly to the proof of Example 1, we consider a 2-dimensional problem fi(x) = ∥x∥1,
f(x) = 1

n

∑n
i=1 fi(x) with f(x∗) = 0. Set the initial vectors x0 = (γ/2,−1)⊤ , v0

i = (1, 1)⊤, and
consider EF21 (3) with Top-1 compressor.

The proof for the case when γ = 0 is trivial. We consider the case when γ > 0. In this case the
function is differentiable at every point of its trajectory and for any t ≥ 0 it holds that

xt =
(

γ(−1)t

2
−1− t γ

)
, ∂fi(xt) =

{(
(−1)t

−1

)}
, vt

i =
(

(−1)t

1

)
.

The base of induction (t = 0) is trivial. For the induction step, we make the calculation

xt+1 = xt − γ vt =
(

γ(−1)t

2
−1− t γ

)
− γ

(
(−1)t

1

)
=
(

γ(−1)t+1

2
−1− (t + 1) γ

)
,

vt+1 = vt+1
i =

(
(−1)t

1

)
+ Top-1

((
(−1)t+1

−1

)
−
(

(−1)t

1

))
=
(

(−1)t+1

1

)
,

where in the last step, Top-1 operator selects the first coordinate since the entries are equal in
absolute value. It remains to compute the function value at these iterates f(xt) to conclude the
proof.
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C Convergence Upper Bound for EF21 in Smooth Convex Setting
In this section, we consider EF21 method with projection

Projected-EF21
xt+1 = ΠX (xt − γ vt), vt = 1

n

n∑
i=1

vt
i ,

vt+1
i = vt

i + C(∇fi(xt+1)− vt
i).

(19)

where ΠX is a projection operator on a convex set X . This method was proposed and analyzed
earlier in Fatkhullin et al. [2021] for non-convex smooth problems. In Example 2, we showed that
this algorithm is not suitable for non-smooth optimization because it diverges even in a simple
convex example like ∥x∥1. While this algorithm was extensively studied for smooth non-convex
problems, we are not aware of any convergence results for this algorithm under convexity (with
convergence in the function value). To close this gap and complement the failure example of this
method in Example 2 in non-smooth convex case, we provide the convergence result for this method
in smooth convex setting.
Theorem 4. Let each fi(·) be differentiable and Li-smooth on X for all i = 1, . . . , n, i.e., ∥∇fi(x)−
∇fi(y)∥ ≤ Li∥x − y∥ for all x, y ∈ X , and let f(·) be convex over a convex compact set X ⊆ Rd

with diameter RX . Then for any T ≥ 1 Projected-EF21 with stepsize γ ≤ δ
2
√

6L
satisfies

E
[
f(xT )− f(x∗)

]
≤ R2

X
γT

(
1 + log

(
γΛ0T

R2
X

))
,

where Λ0 := f(x0)− f(x∗) + 1√
6L
∥g0 −∇f(x0)∥2, and L :=

√
1
n

∑n
i=1 L2

i .

Remark 4. The current stepsize restriction is γ ≤ δ
2
√

6L
, where L is the quadratic mean of the

smoothness constants Li. This restriction can be further improved by following the results in
Richtárik et al. [2024], which requires weighting workers’ contributions by non-uniform constants.
This leads to the improved step-size (and eventually improved rate) of the form γ ≤ O(1/L), where
L = 1

n

∑n
i=1 Li, since L ≤ L always holds.

Before we move to the proof of this result, a few comments are in order. First, if we set
γ = δ

2
√

6L
, this theorem implies Õ

(
LR2

X
δT

)
convergence rate for Projected-EF21, where Õ hides

numerical constants and a logarithmic term. This convergence rate recovers (up to a logarithmic
factor) the rate of subgradient descent when δ = 1 (no compression), and is 1/δ times worse
in the presence of compression. This is consistent with rates in non-convex and strongly convex
settings [Richtárik et al., 2021, Fatkhullin et al., 2021]. We believe the logarithmic factor can be
removed by a more careful choice of parameter λ in the proof below. Second, the compactness of the
set X is critical in the analysis of the method, it would be interesting to explore if this requirement
can be removed. Finally, the extension of this method to stochastic setting is possible by replacing
∇fi(xt+1) with a large mini-batch or momentum estimator, however, a batch-free version of this
method may not converge due to a counter-example in [Fatkhullin et al., 2024].

Proof. Since each fi is Li-smooth, it follows that f(x) = 1
n

∑n
i=1 fi(x) is L-smooth with L =√

1
n

∑n
i=1 L2

i . Next, we follow the proof technique similar to Theorem 8 in [Fatkhullin et al.,
2023b]. By smoothness of f , we have for any z ∈ X

f
(
xt+1

)
≤ f

(
xt
)

+
〈
∇f

(
xt
)

, xt+1 − xt
〉

+ L

2
∥∥∥xt+1 − xt

∥∥∥2

= f
(
xt
)

+
〈
vt, xt+1 − xt

〉
+ 1

2γ

∥∥∥xt+1 − xt
∥∥∥2

+ ⟨∇f
(
xt
)
− vt, xt+1 − xt⟩ −

(
L

2 −
1

2γ

)∥∥∥xt+1 − xt
∥∥∥2

≤ f
(
xt
)

+ 1
2γ

∥∥∥xt − z
∥∥∥2
− 1

2γ

∥∥∥xt+1 − z
∥∥∥2

+
〈
vt, z − xt

〉
+
〈
∇f

(
xt
)
− vt, xt+1 − xt

〉
−
(

L

2 −
1

2γ

)∥∥∥xt+1 − xt
∥∥∥2

=: (∗),
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where the last inequality follows by the update rule of the algorithm. Next, rearranging we get

(∗) = f
(
xt
)

+ 1
2γ

∥∥∥xt − z
∥∥∥2
− 1

2γ

∥∥∥xt+1 − z
∥∥∥2

+
〈
∇f

(
xt
)

, z − xt
〉

+
〈
∇f

(
xt
)
− vt, xt+1 − z

〉
−
(

L

2 −
1

2γ

)∥∥∥xt+1 − xt
∥∥∥2

≤ f
(
xt
)

+ 1
2γ

∥∥∥xt − z
∥∥∥2
− 1

2γ

∥∥∥xt+1 − z
∥∥∥2

+
〈
∇f

(
xt
)

, z − xt
〉

+γ

2
∥∥∥vt −∇f

(
xt
)∥∥∥2

+ 1
2γ

∥∥∥xt+1 − z
∥∥∥2
−
(

L

2 −
1

2γ

)∥∥∥xt+1 − xt
∥∥∥2

= f
(
xt
)

+ 1
2γ

∥∥∥xt − z
∥∥∥2

+
〈
∇f

(
xt
)

, z − xt
〉

+ γ

2
∥∥∥vt −∇f

(
xt
)∥∥∥2
−
(

L

2 −
1

2γ

)∥∥∥xt+1 − xt
∥∥∥2

,

where we used Young’s inequality ⟨a, b⟩ ≤ γ
2∥a∥

2 + 2
γ ∥b∥

2 for any a, b ∈ Rd. Using (lower curvature)
smoothness of f , we derive

f
(
xt+1

)
≤ f(z) +

( 1
2γ

+ L

2

)∥∥∥xt − z
∥∥∥2

+ γ

2
∥∥∥vt −∇f

(
xt
)∥∥∥2
−
(

L

2 −
1

2γ

)∥∥∥xt+1 − xt
∥∥∥2

≤ f(z) + 1
γ

∥∥∥xt − z
∥∥∥2

+ γ

2
1
n

∥∥∥vt
i −∇fi

(
xt
)∥∥∥2
−
(

L

2 −
1

2γ

)∥∥∥xt+1 − xt
∥∥∥2

,

where the last inequality holds since γ ≤ 1/L. Now we fix some λ ∈ [0, 1] and select z = (1 −
λ) xt + λx∗ ∈ X , where x∗ ∈ X∗. By convexity of f(·), we have

f(z) ≤ (1− λ)f(xt) + λf(x∗)− λ(1− λ)
2L

∥∇f(xt)−∇f(x∗)∥2 ≤ (1− λ)f(xt) + λf(x∗).

Moreover,
∥∥xt − z

∥∥ = λ
∥∥xt − xx

∥∥ ≤ λ RX , where RX = maxx,y∈X ∥x − y∥. Thus, we get for any
λ ∈ [0, 1]

f(xt+1)− f(x∗) ≤ (1− λ)(f(xt)− f(x∗)) + λ2R2
X

γ
+ γ

2 Vt −
(

L

2 −
1

2γ

)
∥xt+1 − xt∥2. (20)

For a contractive compressor we have E∥C(x) − x∥2 ≤ (1 − δ)∥x∥2 for some δ ∈ (0, 1]. Let Vt,i :=
E∥gt

i −∇fi(xt)∥2, Vt := 1
n

∑n
i=1 Vt,i. Then

Vt+1,i = E∥gt+1
i −∇fi(xt+1)∥2 = E∥C(∇fi(xt+1)− gt

i) + gt
i −∇fi(xt+1)∥2

≤ (1− δ)E∥gt
i −∇fi(xt+1)∥2

≤ (1− δ)
(

1 + δ

2

)
E∥gt

i −∇fi(xt)∥2 +
(

1 + 2
δ

)
E∥∇fi(xt+1)−∇fi(xt)∥2

≤
(

1− δ

2

)
Vt,i + 3L2

i

δ
E∥xt+1 − xt∥2.

By averaging for i = 1, . . . , n, we get

Vt+1 ≤
(

1− δ

2

)
Vt + 3L2

δ
E∥xt+1 − xt∥2. (21)

Define ∆t := E[f(xt)− f(x∗)], then adding (20) +2
δ times (21) and taking γ ≤ δ

2
√

6L
, we have

Λt+1 := ∆t+1 + 2γ

δ
Vt+1

≤ (1− λ)∆t + γ

2 Vt + 2γ

δ

(
1− δ

2

)
Vt + λ2

γ
R2

X −
(

L

2 −
1

2γ
+ 3L2 · 2γ

δ

)
E∥xt+1 − xt∥2

= (1− λ)∆t + 2γ

δ

(
1− δ

2 + γ

2
δ

2γ

)
Vt + λ2

γ
R2

X −
(

L

2 −
1

2γ
+ 3L2

δ

2γ

δ

)
E∥xt+1 − xt∥2

≤ (1− λ)∆t + 2γ

δ

(
1− δ

4

)
Vt + λ2

γ
R2

X

≤ (1− λ)Λt + λ2

γ
R2

X ,
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where in the last step we assume the choice λ ≤ δ/4. Finally, we unroll the recursion for t =
0, 1, . . . , T − 1 and setting λ = min

{
δ
4 ; 1

N log
(

γΛ0N
R2

X

)}
, we derive

ΛT ≤ (1− λ)T Λ0 +
(

T −1∑
t=0

(1− λ)t

)
λ2R2

X
γ
≤ (1− λ)T Λ0 + λR2

X
γ

= exp(T log(1− λ))Λ0 + λR2
X

γ
≤ exp

(
− log

(
γΛ0T

R2
X

))
Λ0 + λR2

X
γ

≤ R2
X

γT
+ R2

X
γT

log
(

γΛ0T

R2
X

)
.
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D Convergence Upper Bound for Safe-EF with Bidirectional Com-
pression

The analysis uses the “virtual iterates” framework, which is often used in the literature [Stich and
Karimireddy, 2019, Koloskova et al., 2023, Mishchenko et al., 2023, Islamov et al., 2024b]. Define
the virtual iterates x̂t := wt − γet with x̂0 = x0. Note that then we have x̂t+1 = x̂t − γht. Indeed,
assume that it is true at iteration t, then

x̂t+1 = wt+1 − γet+1 = (wt − γvt)− γ(et + ht − vt) = (wt − γet)− γht = x̂t − γht. (22)

We additionally define êt := wt − xt, an error that appears due to down-link (server to worker)
compression.

Lemma 1. For any x ∈ Rd, the following inequality holds

∑
t∈B

γ(f(xt)− f(x)) +
∑
t∈N

γ[c− g(x)] ≤ 1
2∥x

0 − x∥2 + 1
2

T −1∑
t=0

γ2∥ht∥2 +
T −1∑
t=0

γ2∥ht∥ · ∥et∥

+
T −1∑
t=0

γ∥ht∥ · ∥êt∥

Proof. From the update rule (22), we have

∥x̂t+1 − x∥2 = ∥x̂t − x∥2 − 2γ⟨ht, x̂t − x⟩+ γ2∥ht∥2.

Rewriting the above, we get

2γ⟨ht, xt − x⟩ = ∥x̂t − x∥2 − ∥x̂t+1 − x∥2 + γ2∥ht∥2 + 2γ⟨ht, xt − wt⟩+ 2γ⟨ht, wt − x̂t⟩
≤ ∥x̂t − x∥2 − ∥x̂t+1 − x∥2 + γ2∥ht∥2 + 2γ2∥ht∥∥et∥+ 2γ∥ht∥∥êt∥.

Summing up both sides, we derive

2
T −1∑
t=0

γ⟨ht, xt − x⟩ ≤ ∥x0 − x∥2 − ∥x̂T − x∥2 +
T −1∑
t=0

γ2∥ht∥2 + 2
T −1∑
t=0

γ2∥ht∥ · ∥et∥+ 2
T −1∑
t=0

γ∥ht∥ · ∥êt∥.

Dropping the non-negative term ∥x̃T − x∥2 and using x̂0 = x0 we obtain

2
T −1∑
t=0

γ⟨ht, xt − x⟩ ≤ ∥x0 − x∥2 +
T −1∑
t=0

γ2∥ht∥2 + 2
T −1∑
t=0

γ2∥ht∥ · ∥et∥+ 2
T −1∑
t=0

γ∥ht∥ · ∥êt∥.

Now we split the sum over N and B. For t ∈ B we have, ht
i = f ′

i(xt), i.e. ht = f ′(xt), and for t ∈ N
ht

i = g′
i(xt), i.e. ht = g′(xt). Therefore, armed with the convexity of f and g we have

⟨f ′(xt), xt − x⟩ ≥ f(xt)− f(x), ∀k ∈ B,

⟨g′(xt), xt − x⟩ ≥ g(xt)− g(x) ≥ c− g(x), ∀k ∈ N .

Therefore, we have∑
t∈B

γ(f(xt)− f(x)) +
∑
t∈N

γ[c− g(x)] ≤
∑
t∈B

γ⟨f ′(xt), xt − x⟩+
∑
t∈N

γ⟨g′(xt), xt − x⟩

≤ 1
2∥x

0 − x∥2 + 1
2

T −1∑
t=0

γ2∥ht∥2 +
T −1∑
t=0

γ2∥ht∥ · ∥et∥+
T −1∑
t=0

γ∥ht∥ · ∥êt∥.
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We now present the main convergence theorem, providing explicit bounds under appropriate
conditions on γ and c. To do so, we need to define xT as follows

xT := 1∑
t∈B γ

∑
t∈B

γxt = 1
|B|

∑
t∈B

xt. (23)

Lemma 2. Suppose that the stepsize γ and threshold c satisfy

T

2 γc >
1
2R2 + 1

2M2γ2T + M2γ2 2
√

1− δ

δ
T + M2γ2 2

√
10(1− δs)

δsδ
T. (24)

Then we have

γE

[∑
t∈B

f(xt)− f(x∗)
]
+γE

[∑
t∈N

c− g(x∗)
]
≤ 1

2R2+1
2M2γ2T+2M2γ2 2

√
1− δ

δ
T+2M2γ2

√
10(1− δs)

δsδ
T.

(25)
Moreover, suppose that (25) holds. Then B is non-empty, i.e. xT is well-defined, and one of the
two following conditions holds

1. |B| ≥ T
2 , or

2. γE
[∑

t∈B f(xt)− f(x∗)
]
≤ 0.

Proof. Let us use x = x∗ in Lemma 1. Taking the expectation and using the fact that ∥ht∥ ≤ M ,
we get

E

[
γ
∑
t∈B

f(xt)− f(x∗)
]

+ E

[
γ
∑
t∈N

c− g(xt)
]
≤ 1

2R2 + 1
2M2

T −1∑
t=0

γ2 + M
T −1∑
t=0

γ2E
[
∥et∥

]
(26)

+ M
T −1∑
t=0

γE
[
∥êt∥

]
. (27)

Using the properties of the compressors {Ci}ni=1, we get by induction that (with the choice η =
δ

2(1−δ))

E
[
∥et+1∥2

]
= E

∥∥∥∥∥ 1
n

n∑
i=1

et+1
i

∥∥∥∥∥
2
 ≤ 1

n

n∑
i=1

E
[
∥et+1

i ∥2
]

= 1
n

n∑
i=1

E
[
∥et

i + ht
i − Ci(et

i + ht
i)∥2

]

≤ 1− δ

n

n∑
i=1

E
[
∥et

i + ht
i∥2
]

≤ (1− δ) (1 + η) 1
n

n∑
i=1

E
[
∥et

i∥2
]

+ (1− δ)
(
1 + η−1

)
M2

≤
t∑

l=0
[(1− δ)(1 + η)]t−l(1− δ)(1 + η−1)M2

≤ (1− δ)(1 + η−1)
1− (1− δ)(1 + η)M2 = (1− δ)(1 + η−1)

δ − η(1− δ) M2 = 2(1− δ)(1 + η−1)
δ

M2 ≤ 4(1− δ)
δ2 M2︸ ︷︷ ︸
=:C2

.

Similarly, we bound E
[
∥êt∥2

]
E
[
∥êt+1∥2

]
= E

[
∥wt+1 − xt+1∥2

]
= E

[
∥wt+1 − xt − C(wt+1 − xt)∥2

]
≤ (1− δs)E

[
∥wt+1 − xt∥2

]
= (1− δs)E

[
∥wt − γvt − xt∥2

]
= (1− δs)E

[
∥êt − γvt∥2

]
≤ (1− δs)(1 + η̂)E

[
∥êt∥2

]
+ (1− δs)(1 + η̂−1)γ2E

[
∥vt∥2

]
. (28)

The base of induction obviously holds since ∥e0
i ∥ = 0.
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Note that

E

∥∥∥∥∥ 1
n

n∑
i=1

et
i + ht

i

∥∥∥∥∥
2
 ≤ 2

n

n∑
i=1

E
[
∥et

i∥2
]

+ E
[
∥ht

i∥2
]

≤ 2
n

n∑
i=1

(4(1− δ)
δ2 M2 + M2

)
= 2M2 4(1− δ) + δ2

δ2 ≤ 10M2

δ2 .

Therefore,

E
[
∥vt∥2

]
≤ 2

n

n∑
i=1

E
[∥∥∥vt

i − (et
i + ht

i)
∥∥∥2
]

+ 2E

∥∥∥∥∥ 1
n

n∑
i=1

(et
i + ht

i)
∥∥∥∥∥

2


≤ 2(1− δ) 1
n

n∑
i=1

E
[∥∥∥et

i + ht
i

∥∥∥2
]

+ 2
n

n∑
i=1

E
[∥∥∥et

i + ht
i

∥∥∥2
]

≤ 8
n

n∑
i=1

E
[
∥et

i∥2
]

+ 8
n

n∑
i=1

E
[
∥ht

i∥2
]

≤ 40M2

δ2 .

Then we continue (28) as follows

E
[
∥êt+1∥2

]
≤

t∑
l=0

[(1− δs)(1 + η̂)]t−l(1− δs)(1 + η̂−1)γ2 · 40M2

δ2

≤ (1− δs)(1 + η̂−1)
1− (1− δs)(1 + η̂)γ2 · 40M2

δ2

≤ γ2 160(1− δs)M2

δ2
s δ2︸ ︷︷ ︸

:=B2

,

i.e. E
[
∥et∥

]
≤ C and E

[
∥êt∥

]
≤ γB. Therefore, we continue (26) as follows

E

[
γ
∑
t∈B

f(xt)− f(x∗)
]

+ E

[
γ
∑
t∈N

c− g(xt)
]
≤ 1

2R2 + 1
2M2γ2T + M2γ2 2

√
1− δ

δ
T

+ M2γ2 4
√

10(1− δs)
δsδ

T. (29)

Assume that B = ∅, then we have using the fact that g(x∗) ≤ 0

Tγc ≤ 1
2R2 + 1

2M2
T −1∑
t=0

γ2 + M
T −1∑
t=0

γ2∥et∥+ M2γ2 2
√

1− δ

δ
T + M2γ2 4

√
10(1− δs)

δsδ
T.

This contradicts the assumption of the lemma (24). Therefore, we must have B ̸= ∅. If we have

γE

[∑
t∈B

f(xt)− f(x∗)
]
≤ 0,

then part 2. holds automatically. If we have the opposite, i.e.

γE

[∑
t∈B

f(xt)− f(x∗)
]

> 0,

then from (29) we have

γE

[∑
t∈N

(c− g(x∗))
]
≤ 1

2R2 + 1
2M2γ2T + M2γ2 2

√
1− δ

δ
T + M2γ2 4

√
10(1− δs)

δsδ
T.
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Since g(x∗) ≤ 0, we have c− g(x∗) ≥ c. Therefore, we have

E

[∑
t∈N

γc

]
≤ 1

2R2 + 1
2M2γ2T + M2γ2 2

√
1− δ

δ
T + M2γ2 4

√
10(1− δs)

δsδ
T. (30)

Assume |B| < T
2 , this means that |N | ≥ T

2 . Therefore, from (30) we derive

T

2 γc ≤ E

[∑
t∈N

γc

]
≤ 1

2R2 + 1
2M2γ2T + M2γ2 2

√
1− δ

δ
T + M2γ2 4

√
10(1− δs)

δsδ
T,

which contradicts (24). Therefore, |B| ≥ T
2 , i.e. part 1. holds.

Now we are ready to prove our main theorem.

Theorem 5. Suppose that γ and c are chosen such that (24) holds. Then we have

E
[
f(xT )− f(x∗)

]
≤ R2

γT
+ M2γ + 4M2γ

√
1− δ

δ
+ 8M2γ

√
10(1− δs)

δsδ
,

E
[
g(xT )

]
≤ c.

Proof. We start by using the results of Lemma 1. Using convexity of f and Jensen inequality we
get that if part 2. of Lemma 1 holds, we have

E
[
f(xT )− f(x∗)

]
≤ 0.

If part 2. does not hold, then we must have |B| ≥ T
2 . Since g(x∗) ≤ 0, from (25) we obtain

γE

[∑
t∈B

f(xt)− f(x∗)
]
≤ 1

2R2 + 1
2M2γ2T + M2γ2 2

√
1− δ

δ
T + M2γ2 4

√
10(1− δs)

δsδ
T.

This implies that

E
[
f(xT )− f(x∗)

]
≤ 2

γT

(
1
2R2 + 1

2M2γ2T + M2γ2 2
√

1− δ

δ
T + M2γ2 4

√
10(1− δs)

δsδ
T.

)

= R2

γT
+ M2γ + 4M2γ

√
1− δ

δ
+ 8M2γ

√
10(1− δs)

δsδ
.

Since g(xt) ≤ c for t ∈ B we get from convexity of g and Jensen inequality that

E
[
g(xT )

]
≤ c.

Corollary 1. If γ = R
√

δsδ

M
√

T
and c = 32RM√

δsδT
, then we have

E
[
f(xT )− f(x∗)

]
≤ 32MR√

δT
,

E
[
g(xT )

]
≤ 32MR√

δT
.

Proof. Note that γc = R
√

δsδ

M
√

T
32RM√

δsδT
= 32R2

T , i.e. T
2 γc = 16R2, and

1
2R2 + 1

2M2γ2T + M2γ2 2
√

1− δ

δ
T + M2γ2

√
10(1− δs)

δsδ
T

=1
2R2 + 1

2M2T
R2δδs
M2T

+ M2T
2
√

1− δ

δ

R2δδs
M2T

+ M2T
4
√

10(1− δs)
δsδ

R2δsδ

M2T

=1
2R2 + 1

2R2δδs + 2R2√1− δδs + 4
√

10(1− δs)R2 ≤ 16R2.
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Therefore, (24) is satisfied. Hence, we have from Theorem 5

E
[
f(xT )− f(x∗)

]
≤ R2

R
√

δsδ

M
√

T
T

+ M2 R
√

δsδ

M
√

T
+ 4M2 R

√
δsδ

M
√

T

√
1− δ

δ
+ 8M2 R

√
δsδ

M
√

T

√
10(1− δs)

δsδ

= MR√
δsδT

+ MR
√

δsδ√
T

+ 4MR
√

(1− δ)δs√
δT

+ 8MR
√

10(1− δs)√
δsδ

≤ 32MR√
δsδT

,

and

g(xT ) ≤ c = 32MR√
δsδT

.
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E Lower bound under Communication Compression for Non-smooth
Convex Setting

In this section, we establish a lower bound in non-smooth convex setting, assuming workers can
compute exact subgradients f ′(x) ∈ ∂f(x) or g′(x) ∈ ∂g(x), and the compression is the only
source of stochasticity in the training. First, in the next subsection, we provide some preliminary
background on the class of zero-respecting algorithms following the exposition in [Huang et al.,
2022], and justify that our Safe-EF method satisfies this general property. In the subsequent
Appendices E.2 and E.3, we provide the proof of Theorem 1.

E.1 Zero-respecting algorithms

Let [x]j denote the j-th coordinate of a vector x ∈ Rd for j ∈ [d], and define prog(x) as

prog(x) :=
{

0 if x = 0;
max1≤j≤d{j : [x]j ̸= 0}, otherwise.

Similarly, for a set of points X = {x1, x2 . . . }, we define prog(X) := maxx∈X prog(x). It holds
that prog(X ∪ Y ) = max{prog(X), prog(Y )} for any X, Y ⊆ Rd, and prog(X) ≤ prog(X̃) for any
X ⊆ X̃ ⊆ Rd.

We examine a distributed learning framework incorporating communication compression. For
each worker i and time step t ≥ 0, we denote by yt

i and zt
i the points at which worker i queries its

subgradient (of fi and/or gi) and function (of fi and/or gi) oracles, respectively. In more detail,
Oi,fi

(yt
i , zt

i) returns a pair of the subgradient of f ′
i(yt

i) and the function value fi(zt
i), namely,

(f ′
i(yt

i), fi(zt
i)) ∈ Oi,fi

(yt
i , zt

i) := (Osg
i,fi

(yt
i , zt

i), Ofv
i,fi

(yt
i , zt

i)),

where f ′
i(yt

i) ∈ ∂fi(yt
i) is an arbitrary selection of subgradient element from subdifferential of fi

at the point yt
i . We assume similarly the oracle for each constraint function gi, Oi,gi(yt

i , zt
i) which

returns a pair (g′
i(yt

i), gi(zt
i)), where g′

i(yt
i) ∈ ∂gi(yt

i). Additionally, xt
i represents the local model

updated by worker i after the t-th query. It is important to note that yt
i and zt

i are not necessarily
equal to the previous local model xt−1

i ; instead, they may serve as auxiliary vectors.
Between the (t−1)-th and t-th gradient queries, each worker is allowed to communicate with the

server by transmitting (compressed) vectors. For worker i, we let Vt
wi→s denote the set of vectors

that worker i aims to send to the server, i.e., the vectors before compression. Due to communication
compression, the vectors received by the server from worker i, which we denote by Vt,⋆

wi→s, are the
compressed version of Vt

wi→s = Ci(Vt,⋆
wi→s) with some underlying compressors Ci. Note that Vt

wi→s

is a set that may include multiple vectors, and its cardinality equals the rounds of communication.
After receiving the compressed vectors from all workers, the server will broadcast some vectors
back to all workers. We let Vt

s→w denote the set of vectors that the server aims to send to workers.
Since we consider the setting with unidirectional compression only, then Vt

s→w ≡ Vt,⋆
s→w .

We now extend the zero-respecting property [Huang et al., 2022] to distributed learning with
communication compression with functional constraints.

Definition 3. We say a distributed algorithm A is zero-respecting if for any t ≥ 0 and 1 ≤ k ≤ d,
the following requirements are satisfied:

1. If worker i queries at yt
i and zt

i with [yt
i ]k ̸= 0, then one of the following must be true:

there exists some 0 ≤ s < t such that [xs
i ]k ̸= 0;

there exists some 1 ≤ s < t such that [Ofi,i(ys
i )]k ̸= 0 or [Ogi,i(ys

i )]k ̸= 0;
there exists some 1 ≤ s < t such that worker i has received some v ∈ Vt

s→w with [v]k ̸= 0;
there exists some 1 ≤ s < t such that worker i has compressed some v ∈ Vt

wi→s with [v]k ̸= 0;
We consider deterministic oracles only.
The compression is performed vector-wise.
Vt,⋆

s→w = C0(Vt
s→w).
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2. If the local model xt
i of worker i, after t-th query, has [xt

i]k ̸= 0, then one of the following
must be true:

there exists some 0 ≤ s < t such that [xs
i ]k ̸= 0;

there exists some 1 ≤ s < t such that [Ofi,i(ys
i )]k ̸= 0 or [Ogi,i(ys

i )]k ̸= 0;
there exists some 1 ≤ s < t such that worker i has received some v ∈ Vt

s→w with [v]k ̸= 0;
there exists some 1 ≤ s < t such that worker i has compressed some v ∈ Vt

wi→s with [v]k ̸= 0;

3. If worker i aims to send some v ∈ Vt
wi→s with [v]k ̸= 0, then one of the following must be

true:
there exists some 0 ≤ s < t such that [xs

i ]k ̸= 0;
there exists some 1 ≤ s < t such that [Oi,fi

(ys
i )]k ̸= 0 or [Oi,gi(ys

i )]k ̸= 0;
there exists some 1 ≤ s < t such that worker i has received some v′ ∈ Vt

s→w with [v′]k ̸= 0;
there exists some 1 ≤ s < t such that worker i has compressed some v′ ∈ Vt

wi→s with [v′]k ̸= 0;

4. If the server aims to broadcast some v ∈ Vt
s→w with [v]k ̸= 0, then one of the following must

be true:{
there exists some 1 ≤ s < t and 1 ≤ i ≤ n such that the server has received some v′ ∈ Vs

wi→s with [v′]k ̸= 0;

Safe-EF is zero-respecting. Fundamentally, the zero-respecting property ensures that any in-
crease in the number of nonzero coordinates in xt

i, yt
i , or other related vectors at worker i stems from

its past local gradient updates, local compression operations, or synchronization with the server.
Likewise, any expansion of nonzero coordinates in the server’s vectors must result from receiving
compressed messages from workers. Notably, this definition explicitly prohibits expanding the set
of nonzero entries through function value queries of fi and/or gi. Therefore, our algorithm class
excludes zero-order methods. Nevertheless, function values can be used to set a stepsize or coeffi-
cients in linear combination to compute local model xt

i. For instance, in Safe-EF function evaluation
of gi are used to define an update direction:

ht
i = f ′

i(xt) 1(g(xt) ≤ c) + g′
i(xt) (g(xt) > c).

In this case, function values are only used to choose which of the directions, f ′
i(xt) or g′

i(xt), to
follow, but they cannot be used to compute the update direction itself.

E.2 Lower bound in unconstrained case

We first establish the lower bound in unconstrained setting when g(x) ≡ 0, which is the most
challenging part of the proof. Without loss of generality, we assume that x0 = 0. Given local loss
functions {fi}ni=1 ⊆ FR,M , compressors {Ci}ni=1 ⊆ C(δ), and an algorithm A ∈ AU

{C}n
i=1

to solve
problem (1), we let x̂A,{fi}n

i=1,{Ci}n
i=1,T denote the output of algorithm A using no more than T

subgradient queries and rounds of communication by each worker node. Let us define the minimax
measure in unconstrained case as

inf
A∈A

sup
{Ci}n

i=1⊆C(δ)
sup

{fi}n
i=1⊆FR,M

E
[
f(x̂A,{fi}n

i=1,{Ci}n
i=1,T )− f∗

]
. (31)

In (31), we do not require the compressors {Ci}ni=1 to be distinct or independent. We allow the
compression parameter δ to be accessible by algorithm A. Let [x]j denote the j-th coordinate of a
vector x ∈ Rd for j ∈ [d], and define prog(x) as

prog(x) :=
{

0 if x = 0;
max1≤j≤d{j : [x]j ̸= 0} otherwise.
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In other words, prog(x) outputs the largest coordinate of input x that corresponds to a non-zero
entry. Importantly, prog(x) satisfies prog(X ∪ Y) = max{prog(X ), prog(Y)} for any X ,Y ∈ Rd,
and prog(X ) ≤ prog(X̃ ) for any X ⊆ X̃ ⊆ Rd (see, e.g., [Huang et al., 2022]). Now we are ready to
state and prove the lower bound stated in the unconstrained setting.

Theorem 6 (Unconstrained setting). For any R, M > 0, n ≥ 2, δ ≤ 0.3, T ≥ δ−2 there exist
functions {fi}ni=1 ⊆ FR,M , compressors {Ci}ni=1 ⊆ C(δ), oracles {Ofi,i}ni=1, and the starting point
x0 = 0 such that for any first-order algorithm A ∈ AU

{Ci}n
i=1

run for T ≤ d iterations from x0,
satisfies

E
[
f(x̂A,{fi}n

i=1,{C}n
i=1,T )− min

x∈Rd
f(x)

]
≥ Ω

(
MR√

δT

)
.

Proof. Step 1. Let us fix some R and define S :=
{

x ∈ Rd | ∥x∥2 ≤ R
2

}
. Let h : Rd → R be defined

as

h(x) :=


C · max

1≤j≤T
xj + µ

2∥x∥
2
2 if x ∈ S,

C · max
1≤j≤T

xj + µR
4 ∥x∥2 if x /∈ S.

Here we assume that T ≤ d. The constant C = M
√

T
1+

√
δT

and µ = 2M
R(1+

√
δT ) . This implies that

C = Rµ
√

T
2 . Note that it is never optimal to have [x∗]j ̸= 0 for T < j ≤ d, and by symmetry, we

know that
[x⋆]1 = · · · = [x⋆]T .

Thus, as long as C ≤ Rµ
√

T
2 the optimal solution x∗ and optimal value of the problem f∗ :=

minx f(x) are given by

[x∗]j =
{
− C

µT for 1 ≤ j ≤ T,

0 for T < j ≤ d,
and f∗ = − C2

2µT
.

One can show that the function h is convex. Indeed, this is because taking max and/or a sum of
convex functions preserves convexity. We consider the following subgradient oracle Oh

h′(x) =

µx + Cek if x ∈ S,

µR x
4∥x∥ + Cek otherwise,

where k is the smallest index such that [x]k = max
1≤j≤T

[x]j . We set fi ≡ h with Oi ≡ Oh for all i ∈ [n].
Note that the first part of the subgradient (either µx or µR x

2∥x∥) is proportional to x. Therefore,
the algorithms are hampered by oracle Oi to reach more non-zero coordinates due to the second
part Cek only. However, it might increase prog(Oi(x)) at most by one, namely,

prog(Oi(x)) ≤ prog(x) + 1. (32)

Step 2. Next, we assume that each worker i uses Rand-K compressor with K = ⌈dδ⌉. Moreover,
we assume that the randomness of the compressors is shared among workers. Then this compressor
belongs to C(δ). This step ensures there is no speedup of the final rate in the number of workers n.

Step 3. We let vt
s→w be the vector that workers receive from the central server in the t-th

communication (similar definition is used for vt
wi→s) and let xt

i be the local model that worker i
produces after the t-th communication round. Recall that algorithms satisfy the zero-respecting
property. Therefore, we find that each worker can only achieve one more non-zero coordinate in the
local model by local subgradient updates based on the received messages from the central server.
Thus, we have that

prog(xt
i) ≤ max

1≤s≤t
prog(vs

s→w) + 1. (33)
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By further noting that vector vt
s→w sent by the central server can be traced back to past vectors

received from all workers, we have

prog(vt
s→w) ≤ max

1≤s≤t
max

1≤i≤n
prog(vs

wi→s). (34)

Combining (33) and (34), we reach

prog(xt
i) ≤ max

1≤s≤t
max

1≤i≤n
prog(vs

wi→s) + 1. (35)

Step 4. Let
x̂ ∈ span

({
xt

i | 0 ≤ t ≤ T, 1 ≤ i ≤ n
})

.

be the final algorithm output after T subgradient queries on each worker. By (35), we have

prog(x̂) ≤ max
1≤t≤T

max
1≤i≤n

prog(vt
wi→s) + 1.

By Lemma 3, we have

P( max
1≤t≤T

max
1≤i≤n

prog(vt
wi→s) ≥ T − 1) ≤ exp ((e− 1)T ⌈dδ⌉/− T + 1) .

Note that if prog(x̂) < T then we have

f(x̂) ≥ 0⇔ f(x̂)− f⋆ ≥ −f⋆ = C2

2µT
.

Therefore, we have

E [f(x̂)− f⋆] ≥ (1− exp ((e− 1)T ⌈dδ⌉/d− T + 1)) C2

2µT
.

If we let d = ⌊5Tδ⌋ and T to be no less than 1
δ2 , we have

d = ⌊5Tδ⌋ ≥ 5Tδ − 1 ≥ 4Tδ + 1
δ2 δ − 1 ≥ 4Tδ ≥ 4

δ
≥ 4.

Then it is easy to verify

(e− 1)T ⌈dδ⌉/d + 1− T ≤ (e− 1)T (dδ + 1)/d + 1− T

= (e− 1)Tδ + (e− 1)T
d

+ 1− T

≤ (e− 1)Tδ + (e− 1)Tδ

4 + 1− T

= (e− 1)5Tδ

4 + 1− T.

Note that since δ ≤ 0.3 and T ≥ 1
δ2 we have

(e− 1)5Tδ

4 + 1− T ≤ −1⇔ T

(
1− (e− 1)5δ

4

)
≥ 2⇐ 6.25 ·

(
1− (e− 1)5 · 0.4

4

)
≈ 3.95 > 2.

Since the last inequality holds, then we have (e− 1)5T δ
4 + 1− T < −1. Therefore, this leads to

E [f(x̂)− f⋆] ≥ Ω
(

C2

2µT

)
= Ω

(
M2T

(1 +
√

δT )2
1

2T

R(1 +
√

δT )
2M

)
= Ω

(
MR

1 +
√

δT

)
.
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Lemma 3 (Technical lemma). In example used in the proof of Theorem 6, it holds that

P( max
1≤t≤T

max
1≤i≤n

prog(vt
wi→s) ≥ T − 1) ≤ exp ((e− 1)T ⌈dδ⌉/d− T + 1) .

Proof. Note that at the t-th round of communication where 1 ≤ t ≤ T , the non-zero coordinates
of v

(t,⋆)
wi→s, the vector that is to be transmitted by worker i to the server before compression, are

achieved by utilizing previously received vectors {v(s)
s→w : 1 ≤ s ≤ t − 1} and local subgradient

queries. Following the argument in Step 3 of Theorem 6, we find that worker i can only achieve
one more non-zero coordinate in v

(t,⋆)
wi→s by local subgradient updates based on received vectors

{v(s)
s→w | 1 ≤ s ≤ t− 1}. Therefore, it holds that

prog(v(t,⋆)
wi→s) ≤ max

1≤s≤t−1
prog(v(s)

s→w) + 1 ≤ max
1≤s≤t−1

max
1≤i≤n

prog(vs
wi→s) + 1 =: B(t−1). (36)

We additionally define B(0) = 1. By the definition of B(t) and that

prog(vt
wi→s) ≤ prog(v(t,⋆)

wi→s), (37)

it naturally holds that

B(t−1) ≤ B(t) = max
1≤s≤t

max
1≤i≤n

prog(vs
wi→s) + 1

= max
{

B(t−1), max
1≤i≤n

prog(vt
wi→s) + 1

}
(37)
≤ max

{
B(t−1), max

1≤i≤n
prog(v(t,⋆)

wi→s) + 1
}

(36)
≤ max

{
B(t−1), B(t−1) + 1

}
≤ B(t−1) + 1. (38)

Therefore, one round of communication can increase B(t) at most by 1. Moreover, (38) implies
that B(t) = B(t−1) + 1 only if max

1≤i≤n
prog(v(t,⋆)

wi→s) = max
1≤i≤n

prog(vt
wi→s). Let k = max

1≤i≤n
prog(v(t,⋆)

wi→s).
Recall that the compressors {C}ni=1 share the randomness, we therefore conclude that having
max

1≤i≤n
prog(vt

wi→s) = max
1≤i≤n

prog(v(t,⋆)
wi→s) = k is equivalent to that coordinate index k is chosen

to communicate in communication round t, which happens with probability K
d . Therefore, we have

P(B(t) = B(t−1) + 1) ≤ P( max
1≤i≤n

prog(vt
wi→s) = max

1≤i≤n
prog(v(t,⋆)

wi→s))

= P
(

the coordinate index max
1≤i≤n

prog(v(t,⋆)
wi→s) is chosen at round t

)
= K

d
.

Let us define the event Et = {the coordinate index max
1≤i≤n

prog(v(t,⋆)
wi→s) is chosen at round t}. Since

the compression happens uniformly at random, we have 1(E(1)), . . . , 1(Et) are i.i.d. Be(K
d ) random

variables where 1(·) is the indicator function. By the above argument, we also have B(t)−B(t−1) ≤
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1(Et) for any 1 ≤ t ≤ T. As a result, we reach by Markov’s inequality

P(B(T ) ≥ T ) = P(eB(T ) ≥ eT )

≤ e−T E
[
exp

(
B(T )

)]
= e−T E

[
exp

(
B(0) +

T∑
t=1

(B(t) −B(t−1))
)]

≤ e−T E
[
eB(0)] T∏

t=1
E
[
exp

(
1(Et)

)]

= e−(T −1)
T∏

t=1

(
(1− K

d
) · 1 + K

d
· e
)

= e−(T −1)
T∏

t=1

(
1 + K

d
(e− 1)

)

≤ e−(T −1)
T∏

t=1
e(e−1)K/d

= e(e−1)T K/d−T +1.

This concludes the proof of the lemma.

E.3 Proof of Theorem 1 (constrained case)

Now we are ready to extend the proof of Theorem 1 to constrained setting based on the construction
in Theorem 6. Notice that the function classes FR,M and GR,M for objective and constraints
have the same properties: convex with M -bounded subgradients. Moreover, in the construction
of Theorem 6, all functions fi are identical and equal to f . Thus, we can set gi(x) := f(x) −
miny∈Rd f(y) for all i ∈ [n]. Then such problem is in the class HR,M by construction, and it
has a unique feasible point, x∗, which also coincides with the solution to unconstrained problem
minx∈Rd f(x). Since ∂fi(x) = ∂gi(x) for any x ∈ Rd and all i ∈ [n], the trajectory of zero-respecting
algorithm on the unconstrained problem minx∈Rd f(x) and the constrained problem

min
x∈Rd

f(x) s.t. g(x) ≤ 0

are identical. Therefore, the statement of Theorem 6 implies the lower bound in Theorem 1.
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F Convergence Upper Bound for Safe-EF in Stochastic Setting
We first recall a standard concentration inequality result for sub-Gaussian random vector.

Lemma 4 (Lemma C.3 from Gorbunov et al. [2019]). Let {ξk}Nk=1 be the sequence of random
vectors with values in Rn such that

E [ξk | ξk−1, . . . , ξ1] = 0 a.s. ∀ k ∈ {1, . . . , N},

and set SN := ∑N
k=1 ξk. Assume that the sequence is {ξk}Nk=1 are sub-Gaussian, i.e.,

E [exp(∥ξk∥2/σ2
k | ξk−1, . . . , ξ1] ≤ exp(1) a.s. ∀ k ∈ {1, . . . , N},

where σ1, . . . , σN are some positive numbers. Then for all b ≥ 0 we have

P

∥SN∥ ≥ (
√

2 +
√

2b)

√√√√ N∑
k=1

σ2
k

 ≤ exp(−b2/3).

We first establish several lemmas.

Lemma 5. Assume that Assumption 3 holds. Assume that the compressors {Ci}ni=1 are determin-
istic (e.g., Top-K). Then for all t ≥ 0 and i ∈ [n] we have ∥et

i∥2 ≤
4(1−δ)

δ2 M2.

Proof. Using the properties of the compressors {Ci}ni=1, we get by induction that (with the choice
η = δ

2(1−δ))

∥et+1∥2 =
∥∥∥∥∥ 1

n

n∑
i=1

et+1
i

∥∥∥∥∥
2

≤ 1
n

n∑
i=1
∥et+1

i ∥2 = 1
n

n∑
i=1
∥et

i + ht
i − Ci(et

i + ht
i)∥2

≤ 1− δ

n

n∑
i=1
∥et

i + ht
i∥2

≤ (1− δ) (1 + η) 1
n

n∑
i=1
∥et

i∥2 + (1− δ)
(
1 + η−1

)
M2

≤
t∑

l=0
[(1− δ)(1 + η)]t−l(1− δ)(1 + η−1)M2

≤ (1− δ)(1 + η−1)
1− (1− δ)(1 + η)M2 = (1− δ)(1 + η−1)

δ − η(1− δ) M2 = 2(1− δ)(1 + η−1)
δ

M2 ≤ 4(1− δ)
δ2 M2,

which concludes the proof.

Theorem 7. Let Assumptions 3 and 4 hold. Let β ∈ (0, 1) be the failure probability. Suppose
γ2wt ≤ n

32M2 . For every 0 ≤ t ≤ T − 1 we have

E [exp(St) | Ft] ≤ exp
(

48M2
T −1∑
l=t

γ2wl + 8σ2
fv

nNfv

T −1∑
l=t

w2
l γ2

)
,

where St is defined in (44).

Proof. We use the same definition of x̃t established in (22):

x̃t = xt − γet where x̃0 = x0. (39)

The base of induction obviously holds since ∥e0
i ∥ = 0.

This restriction is needed to apply Lemma 2.2 from Liu et al. [2023].
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We start by extending the norm of ∥x̃t+1 − x∥2:

∥x̃t+1 − x∥2 = ∥x̃t − x∗∥2 − 2γ⟨ht, x̃t − x∗⟩+ γ2∥ht∥2

= ∥x̃t − x∗∥2 − 2γ⟨ht, xt − x∗⟩ − 2γ⟨ht, x̃t − xt⟩+ γ2∥ht∥2.

Rearranging terms gives us

2γ⟨ht, xt − x⟩ = ∥x̃t − x∥2 − ∥x̃t+1 − x∥2 − 2γ⟨ht, x̃t − xt⟩+ γ2∥ht∥2. (40)

Note that for t ∈ N we have ht = 1
n

∑n
i=1 g′

i(xt, ξt
i), and for t ∈ B we have ht = 1

n

∑n
i=1 f ′

i(xt, ξt
i).

Therefore, we get from (40)

2γ

n

n∑
i=1
⟨g′

i(xt, ξt
i), xt − x⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨f ′

i(xt, ξt
i), xt − x⟩1(t ∈ B)

≤ ∥x̃t − x∥2 − ∥x̃t+1 − x∥2 − 2γ⟨ht, x̃t − xt⟩

+ γ2

n

n∑
i=1
∥g′

i(xt, ξt
i)∥21(t ∈ N ) + γ2

n

n∑
i=1
∥f ′

i(xt, ξt
i)∥21(t ∈ B)

≤ ∥x̃t − x∥2 − ∥x̃t+1 − x∥2 − 2γ⟨ht, x̃t − xt⟩

+ 2γ2

n

n∑
i=1
∥g′

i(xt)∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥g′

i(xt)− g′
i(xt, ξt

i)∥21(t ∈ N )

+ 2γ2

n

n∑
i=1
∥f ′

i(xt)∥21(t ∈ B) + 2γ2

n

n∑
i=1
∥f ′

i(xt)− f ′
i(xt, ξt

i)∥21(t ∈ B). (41)

Note that we have

|⟨ht, x̃t − xt⟩| ≤ ∥ht∥ · γ∥et∥

≤M · γ 2
√

1− δ

δ
M = 2

√
1− δ

δ
γM2.

Therefore, we continue from (41) as follows

2γ

n

n∑
i=1
⟨g′

i(xt, ξt
i), xt − x⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨f ′

i(xt, ξt
i), xt − x⟩1(t ∈ B)

≤ ∥x̃t − x∥2 − ∥x̃t+1 − x∥2 + 4
√

1− δ

δ
γ2M2 + 2γ2M2

+ 2γ2

n

n∑
i=1
∥g′

i(xt)− g′
i(xt, ξt

i)∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥f ′

i(xt)− f ′
i(xt, ξt

i)∥21(t ∈ B).

We add and subtract full subgradients and derive

2γ

n

n∑
i=1
⟨g′

i(xt), xt − x⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨f ′

i(xt), xt − x⟩1(t ∈ B)

≤ ∥x̃t − x∥2 − ∥x̃t+1 − x∥2 + 4
√

1− δ

δ
γ2M2 + 2γ2M2

+ 2γ

n

n∑
i=1
⟨gi(xt)− g′

i(xt, ξt
i), xt − x⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨f ′

i(xt)− f ′
i(xt, ξt

i), xt − x⟩1(t ∈ B)

+ 2γ2

n

n∑
i=1
∥g′

i(xt)− g′
i(xt, ξt

i)∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥f ′

i(xt)− f ′
i(xt, ξt

i)∥21(t ∈ B).
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Now we use convexity of gi and fi to derive

2γ

n

n∑
i=1

(gi(xt)− gi(x))1(t ∈ N ) + 2γ

n

n∑
i=1

(fi(xt)− fi(x))1(t ∈ B)

≤ ∥x̃t − x∥2 − ∥x̃t+1 − x∥2 + 4
√

1− δ

δ
γ2M2 + 2γ2M2

+ 2γ

n

n∑
i=1
⟨gi(xt)− g′

i(xt, ξt
i), xt − x⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨f ′

i(xt)− f ′
i(xt, ξt

i), xt − x⟩1(t ∈ B)

+ 2γ2

n

n∑
i=1
∥g′

i(xt)− g′
i(xt, ξt

i)∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥f ′

i(xt)− f ′
i(xt, ξt

i)∥21(t ∈ B).

We add and substract 1
n

∑n
i=1 gi(xt, ξt

i) to obtain

2γ

n

n∑
i=1

(gi(xt, ξt
i)− gi(x))1(t ∈ N ) + 2γ

n

n∑
i=1

(fi(xt)− fi(x))1(t ∈ B)

≤ ∥x̃t − x∥2 − ∥x̃t+1 − x∥2 + 4
√

1− δ

δ
γ2M2 + 2γ2M2

+ 2γ

n

n∑
i=1
⟨gi(xt)− g′

i(xt, ξt
i), xt − x⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨f ′

i(xt)− f ′
i(xt, ξt

i), xt − x⟩1(t ∈ B)

+ 2γ

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt))1(t ∈ N )

+ 2γ2

n

n∑
i=1
∥g′

i(xt)− g′
i(xt, ξt

i)∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥f ′

i(xt)− f ′
i(xt, ξt

i)∥21(t ∈ B).

Now we set x = x∗. Since 1
n

∑n
i=1 gi(xt, ξt

i) ≥ c for t ∈ N and g(x∗) ≤ 0 we get

2γc1(t ∈ N ) + 2γ

n

n∑
i=1

(fi(xt)− fi(x))1(t ∈ B)− ∥x̃t − x∥2 + ∥x̃t+1 − x∥2 − 4
√

1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1
⟨gi(xt)− g′

i(xt, ξt
i), xt − x⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨f ′

i(xt)− f ′
i(xt, ξt

i), xt − x⟩1(t ∈ B)

+ 2γ

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt))1(t ∈ N )

+ 2γ2

n

n∑
i=1
∥g′

i(xt)− g′
i(xt, ξt

i)∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥f ′

i(xt)− f ′
i(xt, ξt

i)∥21(t ∈ B).

Let us denote ωt
i := g′

i(xt)− g′
i(xt, ξt) and νt

i := f ′
i(xt)− f ′

i(x,ξt
i). Then we have

2γc1(t ∈ N ) + 2γ

n

n∑
i=1

(fi(xt)− fi(x∗))1(t ∈ B)− ∥x̃t − x∗∥2 + ∥x̃t+1 − x∗∥2 − 4
√

1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1
⟨ωt

i , xt − x∗⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨νt

i , xt − x∗⟩1(t ∈ B)

+ 2γ

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt))1(t ∈ N ) + 2γ2

n

n∑
i=1
∥ωt

i∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥νt

i∥21(t ∈ B).
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We add and subtract x̃t in some terms to obtain

2γc1(t ∈ N ) + 2γ

n

n∑
i=1

(fi(xt)− fi(x∗))1(t ∈ B)− ∥x̃t − x∗∥2 + ∥x̃t+1 − x∗∥2 − 4
√

1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1
⟨ωt

i , x̃t − x∗⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨ωt

i , xt − x̃t⟩1(t ∈ N )

+ 2γ

n

n∑
i=1
⟨νt

i , x̃t − x∗⟩1(t ∈ B) + 2γ

n

n∑
i=1
⟨νt

i , xt − x̃t⟩1(t ∈ B)

+ 2γ

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt))1(t ∈ N ) + 2γ2

n

n∑
i=1
∥ωt

i∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥νt

i∥21(t ∈ B).

Using (39) we derive

2γc1(t ∈ N ) + 2γ

n

n∑
i=1

(fi(xt)− fi(x∗))1(t ∈ B)− ∥x̃t − x∗∥2 + ∥x̃t+1 − x∗∥2 − 4
√

1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1
⟨ωt

i , x̃t − x∗⟩1(t ∈ N ) + 2γ2

n

n∑
i=1
⟨ωt

i , et⟩1(t ∈ N )

+ 2γ

n

n∑
i=1
⟨νt

i , x̃t − x∗⟩1(t ∈ B) + 2γ2

n

n∑
i=1
⟨νt

i , et⟩1(t ∈ B)

+ 2γ

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt))1(t ∈ N ) + 2γ2

n

n∑
i=1
∥ωt

i∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥νt

i∥21(t ∈ B).

Since ∥ωt
i∥, ∥νt

i∥ ≤ 2M we get from Lemma 5

2γc1(t ∈ N ) + 2γ

n

n∑
i=1

(fi(xt)− fi(x∗))1(t ∈ B)− ∥x̃t − x∗∥2 + ∥x̃t+1 − x∗∥2 − 4
√

1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1
⟨ωt

i , x̃t − x∗⟩1(t ∈ N ) + 2γ2

n

n∑
i=1

2M · 2
√

1− δ

δ
M1(t ∈ N )

+ 2γ

n

n∑
i=1
⟨νt

i , x̃t − x∗⟩1(t ∈ B) + 2γ2

n

n∑
i=1

2M · 2
√

1− δ

δ
M1(t ∈ B) + 2γ

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt))1(t ∈ N )

+ 2γ2

n

n∑
i=1
∥ωt

i∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥νt

i∥21(t ∈ B).

Rearranging terms, we obtain

2γc1(t ∈ N ) + 2γ

n

n∑
i=1

(fi(xt)− fi(x∗))1(t ∈ B)− ∥x̃t − x∗∥2 + ∥x̃t+1 − x∗∥2 − 12
√

1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1
⟨ωt

i , x̃t − x∗⟩1(t ∈ N ) + 2γ

n

n∑
i=1
⟨νt

i , x̃t − x∗⟩1(t ∈ B) + 2γ

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt))1(t ∈ N )

+ 2γ2

n

n∑
i=1
∥ωt

i∥21(t ∈ N ) + 2γ2

n

n∑
i=1
∥νt

i∥21(t ∈ B).

Now we define

At := 2γc1(t ∈ N )+2γ

n

n∑
i=1

(fi(xt)−fi(x∗))1(t ∈ B)−∥x̃t−x∗∥2+∥x̃t+1−x∗∥2−12
√

1− δ

δ
γ2M2−2γ2M2.

(42)
In the case t ∈ N , we have

At = 2γc

n
− ∥x̃t − x∗∥2 + ∥x̃t+1 − x∗∥2 − 12

√
1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1
⟨ωt

i , x̃t − x∗⟩+ 2γ

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt)) + 2γ2

n

n∑
i=1
∥ωt

i∥2.
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In the case t ∈ B, we have

At = 2γ

n

n∑
i=1

(fi(xt)− fi(x∗))− ∥x̃t − x∗∥2 + ∥x̃t+1 − x∗∥2 − 12
√

1− δ

δ
γ2M2 − 2γ2M2

≤ 2γ

n

n∑
i=1
⟨νt

i , x̃t − x∗⟩+ 2γ2

n

n∑
i=1
∥νt

i∥2.

Following Liu et al. [2023] we define Zt as follows

Zt := wtAt − vt∥x̃t − x∗∥2, (43)

where wt and vt will be defined later. Next, we define

St :=
T −1∑
l=t

Zt. (44)

Let us define the natural filtration Ft := σ(ξ0, . . . , ξt−1). We will show by induction that

E [exp(St) | Ft] ≤ exp
(

48M2
T −1∑
l=t

wlγ
2 + 8σ2

fv
nNfv

T −1∑
l=t

w2
l γ2

)
.

The base of induction is trivial for t = T since ST = 0. Assume that the statement holds for
t ∈ {0, . . . , T − 1}. We have

E [exp(St) | Ft] = E [exp(St+1 + Zt) | Ft]
= E [E [exp(St+1 + Zt | Ft+1] | Ft] .

We now analyze the inner expectation. Conditioned on Ft+1 we have Zt fixed. Using the inductive
hypothesis, we derive

E [exp(Zt + St+1) | Ft+1] ≤ exp(Zt) exp

48M2
T −1∑

l=t+1
wlγ

2

 .

Therefore,

E [exp(Zt + St+1) | Ft] ≤ E [exp(Zt) | Ft] exp

48M2
T −1∑

l=t+1
wlγ

2

 . (45)

From (42), (43), and assuming that t ∈ N we have the following bound

exp(Zt) = exp
(

wt
2γc

n
− wt∥x̃t − x∗∥2 + wt∥x̃t+1 − x∗∥2 − wt

(
2 + 12

√
1− δ

δ

)
γ2M2 − vt∥x̃t − x∗∥2

)

≤ exp
(

2γwt

n

n∑
i=1
⟨ωt

i , x̃t − x∗⟩+ 2γ2wt

n

n∑
i=1
∥ωt

i∥2 + 2γwt

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt))

)
exp(−vt∥x̃t − x∗∥2).

Next, we use Lemma 2.2 from Liu et al. [2023] (with a = 2γwt

n (x̃t−x∗) and b2 = 2γ2wt

n for the terms
with ωt

i , and with a = 2γwt

n · 1 for the terms with gi(xt, ξt
i)− gi(xt)) and independence of function

and subgradient evaluations

E

[
exp

(
2γwt

n

n∑
i=1
⟨ωt

i , x̃t − x∗⟩+ 2γ2wt

n

n∑
i=1
∥ωt

i∥2 + 2γwt

n

n∑
i=1

(gi(xt, ξt
i)− gi(xt))

)
| Ft, t ∈ N

]

≤ exp
(

n ·
[
3
{

4γ2w2
t

n2 · 4M2∥x̃t − x∗∥2 + 2γ2wt

n
· 4M2

}
+ 24γ2w2

t

n2
σ2

fv
Nfv

])

= exp
(

48γ2w2
t

n
M2∥x̃t − x∗∥2 + 24γ2wtM

2 + 8γ2w2
t

n

σ2
fv

Nfv

)
. (46)
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Therefore, from (45) we derive using the definition of vt := 48γ2w2
t

n M2

E [exp(St) | Ft] ≤ exp
([

48γ2w2
t

n
M2 − vt

]
∥x̃t − x∗∥2 + 24M2

T −1∑
l=t

wlγ
2 + 8σ2

fv
nNfv

T −1∑
l=t

w2
l γ2

)

= exp
(

48M2
T −1∑
l=t

wlγ
2 + 8σ2

fv
nNfv

T −1∑
l=t

w2
l γ2

)
.

This concludes the transition step in the case t ∈ N .
Now we move on to the case t ∈ B. The derivations are similar, but we do not have function

values. Therefore, instead of

exp
(

48γ2w2
t

n
M2∥x̃t − x∗∥2 + 24M2wtγ

2 + 8σ2
fv

nNfv
w2

t γ2
)

in (46) we get

exp
(

48γ2w2
t

n
M2∥x̃t − x∗∥2 + 24M2wtγ

2
)

.

Therefore, the transition step holds in both cases.

Corollary 2. Let β ∈ (0, 1) be a failure probability. Suppose the sequence {wt} satisfy the

restrictions of Theorem 7 and wt + 48γ2w2
t

n
M2︸ ︷︷ ︸

=vt

≤ wt−1. Let the stepsize γ = γ̃√
T

. Then with

probability at least 1− β

∑
t∈N

γc +
∑
t∈B

γ(f(xt)− f(x∗)) ≤ C1 log 1
β

+ ∥x̃0 − x∗∥2 + γ2M2
(

50 + 12
√

1− δ

δ

)
T

+ 8σ2
fv

C1nNfv
Tγ2,

where C1 := 48γ̃2M2

n .

Proof. Let T = 48M2∑T −1
t=0 wtγ

2+ 8σ2
fv

nNfv

∑T −1
t=0 w2

t γ2+log 1
β . By Theorem 7 and Markov’s inequality,

we have

P(S0 ≥ T ) ≤ P(exp(S0) ≥ exp(T ))
≤ exp(−T )E [exp(S0)]

≤ exp(−T ) exp
(

48M2
T −1∑
t=0

γ2wt + 8σ2
fv

nNfv

T −1∑
t=0

γ2w2
t

)
= β.
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Note that since wt + vt ≤ wt−1 by the assumption of the lemma

S0 =
T −1∑
t=0

Zt

=
T −1∑
t=0

[
wt

(
2γc1(t ∈ N ) + 2γ(f(xt)− f(x∗))1(t ∈ B)

)
− (vt + wt)∥x̃t − x∗∥2 + wt∥x̃t+1 − x∗∥2

−wt

(
2 + 12

√
1− δ

δ

)
γ2M2

]

≥
T −1∑
t=0

[
2γwt

(
c1(t ∈ N ) + (f(xt)− f(x∗))1(t ∈ B)

)
−

T −1∑
t=0

(
wt−1∥x̃t − x∗∥2 − wt∥x̃t+1 − x∗∥2

)

−
T −1∑
t=0

wt

(
2 + 12

√
1− δ

δ

)
γ2M2

]

≥
T −1∑
t=0

2γwt

(
c1(t ∈ N ) + (f(xt)− f(x∗))1(t ∈ B)

)
− w0∥x0 − x∗∥2 + wT −1∥x̃T − x∗∥2

−
T −1∑
t=0

wt

(
2 + 12

√
1− δ

δ

)
γ2M2

≥
T −1∑
t=0

2γwt

(
c1(t ∈ N ) + (f(xt)− f(x∗))1(t ∈ B)

)
− w0∥x0 − x∗∥2 + wT −1∥x̃T − x∗∥2

−
T −1∑
t=0

wt

(
2 + 12

√
1− δ

δ

)
γ2M2.

Therefore, with a probability of at least 1− β we have∑
t∈N

2γwtc +
∑
t∈B

2γwt(f(xt)− f(x∗)) + wT −1∥x̃T − x∗∥2

≤ S0 + w0∥x0 − x∗∥2 +
T −1∑
t=0

wt

(
2 + 12

√
1− δ

δ

)
γ2M2

≤ log 1
β

+ w0∥x0 − x∗∥2 + γ2
(

48M2 + 2M2 + 12
√

1− δ

δ
M2

)
T −1∑
t=0

wt + 8σ2
fv

nNfv

T −1∑
t=0

w2
t γ2.

We need to satisfy the following restrictions on wt:

wt ≤
n

32γ2M2

wt + 48γ2

n
w2

t ≤ wt−1.

Let
C1 := 48γ̃2M2

n
. (47)

Then we set wT −1 = 1
C1+ 48̃γ2M2

n

= 1
2C1

. Next, we set wt−1 such that the second inequality holds

with equality, namely,

wt−1 = wt + 48γ2M2

n
w2

t = wt + C1
T

w2
t .

We can show by induction that wt ≤ 1
C1+ C1

T
t
. Indeed, the base of induction holds by the choice of
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wT −1. Assume it holds at t, let us show that it holds at t− 1 as well:

wt−1 = wt + C1
T

w2
t

≤ 1
C1 + C1

T t
+ C1

T (C1 + C1
T t)2

≤ 1
C1 + C1

T t
+

(C1 + C1
T t)− (C1 + C1

T (t− 1))
(C1 + C1

T (t− 1))(C1 + C1
T t)

= 1
C1 + C1

T t

(
C1 + C1

T (t− 1)
C1 + C1

T (t− 1)
+

C1 + C1
T t− (C1 + C1

T (t− 1))
C1 + C1

T (t− 1)

)
= 1

C1 + C1
T (t− 1)

.

Now we show that the first condition is satisfied as well

wtγ
2 = wt

γ̃2

T
≤ 1

C1
T t

γ̃2

T
= 1

48γ̃2M2

n t
γ̃2 = n

48M2t
≤ n

32M2 .

Therefore, with a probability at least 1− β, we have∑
t∈N

2γwtc +
∑
t∈B

2γwt(f(xt)− f(x∗)) + wT −1∥x̃T − x∗∥2

≤ log 1
β

+ w0∥x0 − x∗∥2 + γ2
(

48M2 + 2M2 + 12
√

1− δ

δ
M2

)
T −1∑
t=0

wt + 8σ2
fv

nNfv

T −1∑
t=0

w2
t γ2. (48)

Since wT −1 = 1
2C1

and 1
2C1
≤ wt ≤ 1

C1
we have with probability at least 1− β

1
C1

∑
t∈N

γc + 1
C1

∑
t∈B

γ(f(xt)− f(x∗))

≤ log 1
β

+ 1
C1
∥x0 − x∗∥2 + γ2

(
50M2 + 12

√
1− δ

δ
M2

)
T −1∑
t=0

wt + 8σ2
fv

nNfv

T −1∑
t=0

w2
t γ2. (49)

We estimate the sums ∑T −1
t=0 wt ≤ T

C1
and ∑T −1

t=0 w2
t ≤ T

C2
1
. Therefore, we derive

1
C1

∑
t∈N

γc + 1
C1

∑
t∈B

γ(f(xt)− f(x∗))

≤ log 1
β

+ 1
C1
∥x0 − x∗∥2 + γ2M2

(
50 + 12

√
1− δ

δ

)
T

C1
+ 8σ2

fv
nNfv

T

C2
1

γ2. (50)

Canceling C1 in both sides, we finally obtain∑
t∈N

γc +
∑
t∈B

γ(f(xt)− f(x∗))

≤ C1 log 1
β

+ ∥x0 − x∗∥2 + γ2M2
(

50 + 12
√

1− δ

δ

)
T + 8σ2

fv
C1nNfv

Tγ2. (51)

Lemma 6. Let β ∈ (0, 1) be the failure probability and C1 be defined as in(47). Suppose that the
stepsize γ = γ̃√

T
and threshold c satisfy

T

2 γc > C1 log 1
β

+ ∥x0 − x∗∥2 + γ2M2
(

50 + 12
√

1− δ

δ

)
T + 8σ2

fv
C1nNfv

Tγ2. (52)
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Then we have with probability at least 1− β∑
t∈N

γc +
∑
t∈B

γ(f(xt)− f(x∗))

≤ C1 log 1
β

+ ∥x0 − x∗∥2 + γ2M2
(

50 + 12
√

1− δ

δ

)
T + 8σ2

fv
C1nNfv

Tγ2. (53)

Moreover, assume that (53) holds. Then B is non-empty, i.e. xT = 1
|B|
∑

t∈B xt is well-defined, and
one of the following conditions holds

1. |B| ≥ T
2 , or

2. γ
∑

t∈B f(xt)− f(x∗) ≤ 0.

Proof. Assume that B = ∅. Then from Corollary 2 we have that with probability at least 1− β we
have

Tγc ≤ C1 log 1
β

+ ∥x0 − x∗∥2 + γ2M2
(

50 + 12
√

1− δ

δ

)
T + 8σ2

fv
C1nNfv

Tγ2,

This contradicts the assumption of the lemma. Hence, we must have B ≠ ∅. Now assume that
(53) holds. If we have γ

∑
t∈B f(xt) − f(x∗) ≤ 0, then the second condition holds. Assume that

γ
∑

t∈B f(xt)− f(x∗) > 0, then from (53) we obtain

∑
t∈N

γc ≤ C1 log 1
β

+ ∥x0 − x∗∥2 + γ2M2
(

50 + 12
√

1− δ

δ

)
T + 8σ2

fv
C1nNfv

Tγ2.

Assume that |B| < T
2 , this means that |N | ≥ T

2 . Therefore, we have

T

2 γc ≤
∑
t∈N

γc ≤ C1 log 1
β

+ ∥x0 − x∗∥2 + γ2M2
(

50 + 12
√

1− δ

δ

)
T + 8σ2

fv
C1nNfv

Tγ2,

which contradicts (52). Hence, if γ
∑

t∈B(f(xt)− f(x∗)) > 0, then |B| ≥ T
2 .

Now we are ready to establish our main convergence result in the stochastic setting.

Theorem 8. Let β ∈ (0, 1) be the failure probability and C1 be defined as in (47). Suppose that
the choice of γ and c are chosen such that (52) holds. Then we have with a probability of at least
1− β that

f(xT )− f(x∗) ≤
2C1 log 1

β + 2∥x0 − x∗∥2

γT
+ 2γM2

(
50 + 12

√
1− δ

δ

)
+ 16σ2

fv
C1nNfv

γ.

Proof. We start by using the results Lemma 6. Using the convexity of f and Jensen’s inequality
we get that if part 2. holds, then with a probability of at least 1− β we have

f(xT )− f(x∗) ≤ 0.

If part 2. does not hold, then |B| ≥ T
2 . Therefore, from (52) we obtain

f(xT )− f(x∗) ≤ 2
γT

(
C1 log 1

β
+ ∥x0 − x∗∥2 + γ2M2

(
50 + 12

√
1− δ

δ

)
+ 8σ2

fv
C1nNfv

Tγ2
)

=
2C1 log 1

β + 2∥x0 − x∗∥2

γT
+ 2γM2

(
50 + 12

√
1− δ

δ

)
T + 16σ2

fv
C1nNfv

γ.
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Corollary 3. Let β ∈ (0, 1/2) be the failure probability. Let

R2 ≥ ∥x0 − x∗∥2 + σ2
fv/Nfv
6M2 .

If γ = γ̃√
T

= R
√

δ
M

√
T

, i.e., γ̃ = R
√

δ
M and c = 128RM(1+log 1/β)√

δT
, then we have with a probability of at

least 1− 2β

f(xT )− f(x∗) ≤ MR√
δT

(
48 log 1

β
+ 128

)
,

g(xT ) ≤ 256RM(1 + log 1/β)√
δT

.

Proof. First, we check that the stepsize γ and threshold c satisfy (52). We have with C1 = 48γ̃2M2

n

48R2δ
M2 M2

n
log 1

β
+ ∥x0 − x∗∥2 + R2δ

M2T
M2

(
50 + 12

δ

)
T + 8σ2

fv
nNfv

n

48R2δ
M2 M2

T
R2δ

M2T

≤ 48R2δM2

nM2 log 1
β

+ ∥x0 − x∗∥2 + 50R2δ + 12R2 + σ2
fv/Nfv
6M2

≤ 48R2δ

n
log 1

β
+ ∥x0 − x∗∥2 + 62R2 + R2

≤ 64R2 log 1
β

+ 64R2.

At the same time, we have

T

2 γc = T

2
R
√

δ

M
√

T

128RM(1 + log 1/β)√
δT

= 64R2(1 + log 1/β).

Therefore, with a probability of at least 1− β we have

f(xT )− f(x∗) ≤
48R2δ log 1

β + 2∥x0 − x∗∥2

T

M
√

T

R
√

δ
+ 2 R

√
δ

M
√

T
M2

(
50 + 12

δ

)
+ 16σ2

fv/Nfv

48 R2δ
M2n

n

R
√

δ

M
√

T

= (48δ log 1
β

+ 2) MR√
δT

+ 100RM
√

δ

M
√

T
+ 24 RM√

δT
+ 2MR

√
δ√

δT

= MR√
δT

(
48 log 1

β
+ 128

)
. (54)

For the constraint violation we have that

g(xT ) ≤ 1
|B|

∑
t∈B

g(xt) ≤ max
t∈B

g(xt).

Moreover, from (15) and Lemma 4 we have

P

∣∣∣∣∣
n∑

i=1
gi(xt)− gi(xt, ξt

i)
∣∣∣∣∣ > (

√
2 +
√

2b)

√√√√ n∑
i=1

σ2
fv

Nfv

 ≤ exp(−b2/3).

This implies that

P

(
g(xt) >

1
n

n∑
i=1

gi(xt, ξt
i) + (

√
2 +
√

2b) σfv√
nNfv

)
≤ exp(−b2/3).

‘ Since for t ∈ B we have 1
n

∑n
i=1 gi(xt, ξt

i) ≤ c, then we get

P
(

g(xT ) ≤ c + (
√

2 +
√

2b) σfv√
nNfv

)
≥ 1− T exp(−b2/3).
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Choosing b2 = 3 log T
β we obtain

P
(

g(xT ) ≤ c + (
√

2 +
√

2b) σfv√
nNfv

)
≥ 1− β.

Now we choose Nfv ≥ (
√

2 +
√

2b)2 σ2
fv

nc2 we obtain

P
(
g(xT ) ≤ 2c

)
≥ 1− β. (55)

Thus with probability at least 1−2β we have both (54) and (55) hold. The batch-size Nfv depends
on the problem constants as follows

Nfv ≥ (
√

2 +
√

2b) σ2
fv

nc2 = Õ
(

σ2
fv

nR2M2

δT

)
= Õ

(
σ2

fvδT

nR2M2

)
.

The number of iterations of Safe-EF to converge to ε-accuracy is

T = Õ
(

R2M2

δε2

)
.

Therefore, the batch-size required in the stochastic setting is of order

Nfv ≥ Õ
(

σ2
fvδ R2M2

δε2

nR2M2

)
= Õ

(
σ2

fv
nε2

)
.

This concludes the proof.
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G Primal-dual Methods
A short primer on primal-dual methods. In Section 1, we briefly mentioned the primal-dual
approach to solving the constrained problem (1), (4), here we elaborate more on this direction.
Consider the Lagrangian with non-negative multiplier λ:

L(x, λ) := f(x) + λ g(x) = 1
n

n∑
i=1

fi(x) + λ

n

n∑
i=1

gi(x).

Primal-dual schemes aim to find the saddle-point of this Lagrangian. If Slater’s conditions hold,
i.e., f(x) is convex and there exists a strictly feasible solution g(x) < 0, then the strong duality
holds, that is

min
x

max
λ≥0
L(x, λ) = max

λ≥0
min

x
L(x, λ),

and general purpose methods for minimizing the primal-dual gap, Gap(xt, λt) := maxλ≥0 L(λ, xt)−
minx L(λt, x), can be used. The basic variant of such a scheme is Gradient Descent Ascent:

Primal-dual
xt+1 = xt − γt (f ′(xt) + λtg′(xt)),
λt+1 = Πλ≥0(λt + ηt g(xt+1)),

(56)

where {γt}, {ηt} are primal and dual stepsizes respectively, and Πλ≥0 denotes the projection onto
the non-negative ray. Similarly to the design of Safe-EF, we can write down an error feedback variant
of this method for distributed optimization Algorithm 2. The intuitive justification of Algorithm 2
is similar to that of Safe-EF in Appendix D. However, a rigorous convergence analysis of Gap(xt, λt)
for Algorithm 2 remains open since even the analysis of (56) (special case of Algorithm 2 in case
of no compression) typically requires the projection step in xt variable. This is problematic for EF
analysis because the virtual iterates x̂t defined in (22) do not have such simple form anymore.

Algorithm 2 Primal-dual Error Feedback for Constrained Optimization with Bidirectional Com-
pression

1: Input: initial point x0, λ0 ∈ Rd, stepsizes {γt}, {ηt}, compressors C and Cs at the workers and
the server

2: for t = 0, . . . , T − 1 do
3: for i = 1, . . . , n do
4: Compute ht

i = f ′
i(xt) + λtg

′
i(xt)

5: Compute vt
i = C(et

i + ht
i) and send to server

6: Compute et+1
i = et

i + ht
i − vt

i

7: end for
8: Compute vt = 1

n

∑n
i=1 vt

i

9: Compute wt+1 = wt − γtv
t

10: Compute xt+1 = xt + Cs(wt+1 − xt) and send Cs(wt+1 − xt) to workers
11: for i = 1, . . . , n do
12: Compute xt+1 = xt + Cs(wt+1 − xt)
13: Compute gi(xt+1) and send to server ▷ Cheap communication of one float
14: end for
15: Compute ut+1 = 1

n

∑n
i=1 gi(xt+1)

16: Compute λt+1 = Πλ≥0(λt + ηtu
t+1)

17: end for

Experiments. Although a rigorous convergence analysis for Primal-dual remains open, we inves-
tigate its practical performance through empirical evaluation. We follow the same experimental
setup as before and compare Safe-EF with Algorithm 2, analyzing its sensitivity to different dual
initializations λ0. We present our results in Figure 7, where we compare the objective and constraint
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after 500M samples, the number of samples required for Safe-EF to converge. As shown, different
values of λ0 have significant impact on the performance of Primal-dual. In contrast, Safe-EF that
does not require additional tuning of hyperparameters and only slightly underperforms Primal-dual
when λ0 = 2.
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Figure 7: Objective and constraint values of Safe-EF compared to Primal-dual with different initial-
ization values of λ0. Each point represents a distinct experiment trial with a different random seed.
Safe-EF ensures safety and achieves solid performance without requiring additional hyperparameter
tuning.

H Additional Experiments
Cartpole. We repeat our safety experiment using the Cartpole environment from Brax [Freeman
et al., 2021], with the exception of using K/d = 0.01 instead of K/d = 0.1. As before, we compare
Safe-EF with EF14 Seide et al. [2014], EF21 [Richtárik et al., 2021] and Parallel-CRPO. The results are
presented in Figure 8. Similarly to the experiments with the Humanoid, Safe-EF rapidly satisfies the
constraints with only a slight performance reduction in the objective. EF14 outperforms Safe-EF,
however violates the constraints. Further, EF21 diverges during the last part of training. Finally,
as Parallel-CRPO does not employ compression at all, it requires significantly more gigabytes per
worker to converge.
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Figure 8: Objective and constraint in the Cartpole environment. Safe-EF satisfies the constraints
while maintaining competitive performance.

Price of compression. We follow the same evaluation protocol used in Figure 3 however now,
instead of measuring how many gigabytes are required to reach a certain benchmark performance,
we use a fixed sample “budget”, and evaluate the performance achieved by each algorithm under
this budget. Accordingly, we record Ĵr after 100M and 500M samples, corresponding to 4883 and
24415 iterations respectively, for different values of K/d. We present the results in Figure 9. As
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shown, both Top-K and Rand-K perform well under diminishing values of K/d after 500M samples.
For a training budget of 100M samples, Top-K significantly surpasses CGD and Rand-K.
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Figure 9: Performance for different compression ratios. Safe-EF with Top-K and Rand-K strategies
outperform the CGD baseline. For a training budget of 500M samples, Top-K reaches adequate
performance, even under severe compression.

Non-distributed baseline. We show that Safe-EF is able to find a non-trivial policy, by com-
paring it against Parallel-CRPO and its non-distributed variant, CRPO, where the latter is trained
and evaluated only on the nominal model p. We present our results in Figure 10.
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Figure 10: Safe-EF performance is only slightly degraded compared to a non-distributed baseline in
terms of sample efficiency. However, in the distributed setup, as we observed in Figure 4, Safe-EF
significantly outperforms Parallel-CRPO in communication efficiency.

Learning curves. In Figure 11 we provide the full learning curves of the experiment trials used
for Figures 3 and 9.
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Figure 11: Objective and constraint learning curves for different compression ratio. Safe-EF with
Top-K outperforms Rand-K and CGD, even under small compression values.
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Table 1: The algorithms’ hyperparameters used in the training from Section 6.1. Here γ denotes
the stepsize for all algorithms, β is the momentum parameter for EF21M, and η is the control
stepsize for EControl.

Safe-EF CGD EF21 EF21M EControl
s = 0.1 γ = 0.01 γ = 0.01 γ = 0.003 γ = 0.01, β = 0.001 γ = 0.003, η = 0.01
s = 1.0 γ = 0.01 γ = 0.01 γ = 0.003 γ = 0.01, β = 0.001 γ = 0.003, η = 0.01
s = 1.0 γ = 0.003 γ = 0.01 γ = 0.001 γ = 0.001, β = 0.1 γ = 0.001, η = 0.1

Neyman-Pearson classification. We test Safe-EF on Neyman-Pearson (NP) classification prob-
lem following the work of He et al. [2024]. This statistical formulation aims to minimize type II
error while enforcing an upper bound on type I error, making it particularly relevant for appli-
cations with asymmetric misclassification costs, such as medical diagnosis. The NP classification
is

min
x

f(x) = 1
n0

n0∑
i=1

ϕ(hx, zi,0), s.t. g(x) = 1
n1

n1∑
i=1

ϕ(hx, zi,1) ≤ c,

where fx is a classifier parameterized by x (3 layers MLP with 64 units in each layer and ReLu
activation); ϕ is a cross-entropy loss; {zi,0}n0

i=1 and {zi,1}n1
i=1 are training samples from class 0 and

class 1, respectively. The constraint ensures that the classification error for class 1 does not exceed
a predefined threshold c. Our results are presented in Figure 12.
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Figure 12: Objective and constraint for Neyman-Pearson classification. Compared to the CGD and
Parallel-CRPO baselines, Safe-EF both satisfies the constraint and minimizes the loss while requiring
significantly less communication overhead.

This experiment further supports the argument that Safe-EF is useful for federated learning by
showing its effectiveness in a well-established classification framework.

I Additional Details on the Experimental Setup
Data generation. We generate matrices {Ai}ni=1 and shifts {bi}ni=1 according to Algorithm 3.
Here parameter s controls how different the matrices Ai are from each other. In our experiments,
we vary s ∈ {0.1, 1.0, 10.0} and set ζ = 10−3.

Hyper-parameter tuning for Section 6.1. For all algorithms mentioned in Section 6.1, we
tune the stepsize γ ∈ {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003}. For EF21M we tune the momen-
tum parameter β ∈ {0.0001, 0.001, 0.01, 0.1, 0.5, 0.9}, and for EControl, we tune η ∈ {0.0001, 0.001, 0.01, 0.1, 0.5, 0.9}.
The best hyper-parameters are reported in Table 1.

Humanoid. We use the Humanoid environment implementation from Brax [Freeman et al., 2021]
and extend it with an indicator cost function for whenever any one of the joint angles goes outside
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Algorithm 3 Synthetic data generation mechanism
1: Parameters: number of nodes n, dimension d, noise scalers ζ and s
2: Generate A ∼ N (0, I) ∈ Rd×d and x0 ∼ N (0, I) ∈ Rd

3: Normalize A← A/∥A∥F
4: for i = 1, . . . , n do
5: Generate Ai ∼ N (0, I) ∈ Rd×d

6: Normalize Ai ← Ai/∥Ai∥F
7: Shift Ai ← A + sAi

8: Sample independently ξ ∼ N (0, 1) ∈ Rd

9: Compute bi = Aix0 + ζξ
10: end for
11: Return {Ai, bi}ni=1

of a predefined limits. We perturb the dynamics pi of each worker by sampling the ground’s
friction coefficient and the gear parameter of the joints’ motors. Sampling is done with a uniform
distribution, with a symmetric interval centered around the nominal value given in Brax.

Cartpole. As with the Humanoid, we use the environment implementation provided by Brax.
The cost function is an indicator for whenever the ‘cart’ exceeds a predefined distance from the
center position. The dynamics are perturbed in the same fashion as the Humanoid, using a uniform
distribution centered around nominal values. However in this experiment, we perturb the mass of
the ‘pole’ and the gear parameter of the cart’s motor.

Hyper-parameters tuning for Section 6.2. As mentioned before, our implementation of Safe-
EF builds on PPO [Schulman et al., 2017]. We follow the standard follow the standard implemen-
tation provided in Brax, including their default hyper-parameters used for the Humanoid environ-
ment. Notably, in all of our experiments, we keep the default value γ = 0.0003, with Adam as
optimizer [Kingma and Ba, 2014]. In practice, we found the default set of parameters to work well
with Safe-EF. The only deviation from these parameters is the entropy regularization coefficient,
which we set to 0.01 from 0.001.

For more specific details, please use our open-source implementation https://github.com/
yardenas/safe-ef.
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