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Abstract

Distributed methods are essential for handling machine learning pipelines comprising large-scale
models and datasets. However, their benefits often come at the cost of increased communication
overhead between the central server and agents, which can become the main bottleneck, making
training costly or even unfeasible in such systems. Compression methods such as quantization and
sparsification can alleviate this issue. Still, their robustness to large and heavy-tailed gradient noise,
a phenomenon sometimes observed in language modeling, remains poorly understood. This work
addresses this gap by analyzing Distributed Compressed SGD (DCSGD) and Distributed SignSGD
(DSignSGD) using stochastic differential equations (SDEs). Our results show that DCSGD with
unbiased compression is more vulnerable to noise in stochastic gradients, while DSignSGD remains
robust, even under large and heavy-tailed noise. Additionally, we propose new scaling rules for
hyperparameter tuning to mitigate performance degradation due to compression. These findings are
empirically validated across multiple deep learning architectures and datasets, providing practical
recommendations for distributed optimization.

1 Introduction

Recent advancements in deep learning have been fueled by the development of larger, increasingly
complex models on constantly growing datasets. However, this progress comes at the expense of
extended training times and resources. Therefore, distributed training has gained popularity as a way
to reduce training time [Dean et al., 2012, Abadi et al., 2016]. In this framework, the data is distributed
among several agents or machines that collaboratively train a model being orchestrated by a server.
The objective function can be expressed as an average of N functions: minx∈Rd

[
f(x) := 1

N

∑N
i=1 fi(x)

]
,

where fi represents a loss over the local data of the i-th agent, and x are the trainable parameters.
Although computational resources are rapidly improving [Jouppi et al., 2017], the synchronization
between the server and agents is still a critical performance bottleneck and can significantly increase
training time [Sapio et al., 2021]. Among others, approaches such as communication compression [Seide
et al., 2014, Alistarh et al., 2018, Mishchenko et al., 2024], local computations [Gorbunov et al., 2021,
Koloskova et al., 2020], and asynchronous communication [Islamov et al., 2024b, Mishchenko et al.,
2022] are designed to boost the efficacy of distributed training.

We focus on algorithms that utilize lossy compression: They trade off some precision in the communica-
tion for reduced bandwidth usage, thereby speeding up the overall learning process. Despite the loss in
precision, many compression algorithms are designed to ensure that the learning process converges to
an optimal solution, often with guarantees on the convergence rate [Mishchenko et al., 2024, Richtárik
et al., 2021, Gao et al., 2023]. Compression operators can be divided into two main categories: unbiased
(e.g., sparsification [Khirirat et al., 2018] and quantization [Horváth et al., 2022]) and biased (e.g.,
sign [Bernstein et al., 2018, Safaryan and Richtarik, 2021], Top-k [Alistarh et al., 2018, Beznosikov
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et al., 2023], and low rank [Vogels et al., 2019, Safaryan et al., 2021, Islamov et al., 2023, Qian et al.,
2021]). While the first class is theoretically better understood [Khirirat et al., 2018, Horváth et al., 2023,
Mishchenko et al., 2024, Gorbunov et al., 2020, Condat et al., 2024] and the latter is often empirically
superior [Seide et al., 2014], a theoretical understanding of how these two categories differ fundamentally
remains unclear, particularly regarding their behavior w.r.t. the hyperparameters of the optimizer, or
their robustness to large or heavy-tailed noise.

In this work, we address these questions by comparing unbiased Distributed Compressed SGD (DCSGD)
against Distributed SignSGD (DSignSGD), a popular biased compression optimizer. While the class of
unbiased compressors is widely used in the literature, we specifically focus on biased sign compression
due to its reported practical superiority [Chen et al., 2024, Kunstner et al., 2024], communication
efficiency [Bernstein et al., 2018] and connection to Adam [Balles and Hennig, 2018]. As stochastic
differential equations (SDEs) have become more and more successful in offering valuable insights into
the dynamics of optimization algorithms [Li et al., 2017, Jastrzebski et al., 2018, Liu et al., 2021, Hu
et al., 2019, Bercher et al., 2020, Zhu and Ying, 2021, Cui et al., 2020, Maulén Soto, 2021, Wang and Wu,
2020, Lanconelli and Lauria, 2022, Ayadi and Turinici, 2021, Soto et al., 2022, Li and Wang, 2022, Wang
and Mao, 2022, Bardi and Kouhkouh, 2022, Chen et al., 2022, Kunin et al., 2023, Zhang et al., 2023,
Sun et al., 2023, Li et al., 2023, Gess et al., 2024, Dambrine et al., 2024, Maulen-Soto et al., 2024], we
utilize these continuous-time models to pursue our objective. SDEs can effectively model the dynamics
of discrete-time stochastic optimizers in continuous time (see Figure 1 for a graphical representation).
Crucially, using SDEs allows us to leverage powerful results from Itô calculus, facilitating the derivation
of convergence bounds, stationary distributions, and scaling rules with minimal mathematical effort.
This approach is especially useful for analyzing the intricate interactions between the optimization
landscape, stochastic noise, and compression. Finally, another significant advantage of SDEs is that
they enable a direct comparison between optimizers by making explicit the impact of hyperparameters
and landscape features on their behavior [Compagnoni et al., 2024, Li et al., 2017, Malladi et al., 2022,
Orvieto and Lucchi, 2019].

Contributions. We identify the following as key ones:

1. We derive the first SDEs for DSGD, DCSGD, and DSignSGD under general assumptions and
compare their behavior in terms of expected loss, expected gradient norm, and stationary distribution.
Importantly, we discover that sign and unbiased compression interact differently with gradient noise;

2. For SignSGD, we prove that sign compression causes the noise level, e.g. standard deviation or scale,
to inversely affect the convergence rate of both the loss and the iterates. This is in contrast with
DCSGD for which the noise level plays no role. Additionally, the noise level has a linear impact on
the asymptotic expected loss and covariance of the iterates while this is quadratic for DCSGD;

3. We show that heavy-tailed noise marginally affects the performance of DSignSGD, which remains
robust even to noise of infinite expected value. Under the same conditions, DCSGD fails to converge;

4. We derive novel scaling rules for DCSGD and DSignSGD: These rules provide intuitive and action-
able guidelines to adjust hyperparameters, e.g. to contrast the performance degradation due to
compression, or adapt to newly available hardware;

5. We empirically verify every theoretical insight and prediction. Our experiments are conducted on
a variety of deep learning architectures (MLP, ResNet, ViT, GPT2) and datasets (Breast Cancer
Wisconsin, MNIST, CIFAR-10, FineWeb-Edu).

2 Related work

SDE Approximations and Applications. In [Li et al., 2017], a formal theoretical framework was
proposed to derive SDEs that accurately capture the stochastic nature inherent in optimization methods
commonly used in machine learning. Since then, SDEs have been applied in various areas of machine
learning, including stochastic optimal control to optimally adjust both stepsize [Li et al., 2017, 2019]
and batch size [Zhao et al., 2022]. Importantly, they have been used to characterize convergence bounds
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Figure 1: Empirical validation that the trajectories of the SDEs match those of the respective algorithm
averaged over 500 runs - DSGD (Theorem 3.2) on a Rosenbrock function (Upper-Left); DCSGD
(Theorem 3.6) with Rand-k on an Embedded Saddle (Upper-Right); DSignSGD on a Convex Quadratic:
As per Theorem 3.10, the dynamics of DSignSGD can be partitioned into three phases — Not only
the “Full” SDE is a faithful model for DSignSGD through the whole dynamics, but so are the ODE of
Phase 1 and the SDE of Phase 3 in their respective phases. Importantly, the bound that characterizes
Phase 2 captures the dynamics as prescribed (Bottom-Left); The SDEs and the optimizers move at
the same speed — DCSGD on an MLP (Bottom-Right). For details, see Appendix F.

and stationary distributions [Compagnoni et al., 2023, 2024, 2025], scaling rules [Jastrzebski et al.,
2018, Malladi et al., 2022, Compagnoni et al., 2025], and provided insights in the context of implicit
regularization [Smith et al., 2021, Compagnoni et al., 2023].

Two Classes of Compression. The current theory focuses either on unbiased [Condat et al., 2022,
Philippenko and Dieuleveut, 2024, Mishchenko et al., 2024, Islamov et al., 2021] or biased [Gao et al.,
2023, Fatkhullin et al., 2024] compression without discussing the conceptual differences between the
two classes. However, biased compressors typically outperform their unbiased counterparts in practical
applications [Seide et al., 2014]. Therefore, there is a gap between theory and practice which we aim to
reduce in this paper.

Heavy-tailed Noise. Recent empirical evidence suggests that the noise in several deep learning setups
follows a heavy-tailed distribution [Simsekli et al., 2019, Zhang et al., 2020, Gurbuzbalaban et al., 2021,
Kunstner et al., 2024]. In contrast, previous studies mostly focused on more restricted bounded variance
assumptions. Therefore, there is a growing interest in analyzing the convergence of algorithms under
heavy-tailed noise [Devlin, 2018, Sun, 2023, Yang et al., 2022, Gorbunov et al., 2023]. Earlier works
[Khirirat et al., 2023, Li and Chi, 2023, Yu et al., 2023] combined compression and clipping to make the
algorithm communication-efficient and robust to heavy-tailed noise: We show that the sign compressor
alone effectively addresses both issues without introducing additional hyperparameters.

3



3 Formal Statements & Insights Through SDEs

This section provides the formulations of the SDEs of DSGD (Theorem 3.2), DCSGD (Theorem 3.6)
and DSignSGD (Theorem 3.10): We use these models to derive convergence rates, scaling rules, and
stationary distributions of the respective optimizers. Given the technical complexity of the analysis,
the formal statements and proofs are provided in the appendix for further reference.

Assumptions and Notation. In this section, we assume that the stochastic gradient of the i-th agent
is given by ∇fγi(x) = ∇f(x) + Zi(x), where Zi(x) denotes the gradient noise and Zi(x) is independent
of Zj(x) for i ̸= j. If Zi(x) ∈ L1(Rd), we assume E[Zi(x)] = 0, and if Zi(x) ∈ L2(Rd), we assume
Cov(Zi(x)) = Σi(x)

1 s.t.
√
Σi(x) is bounded, Lipschitz, satisfies affine growth, and together with its

derivatives, it grows at most polynomially fast (Definition 2.5 in Malladi et al. [2022]). Importantly, we
assume that all Zi(x) have a smooth and bounded probability density function whose derivatives are all
integrable: A common assumption in the literature is for Zi(x) to be Gaussian2 Ahn et al. [2012], Chen
et al. [2014], Mandt et al. [2016], Stephan et al. [2017], Zhu et al. [2019], Wu et al. [2020], Xie et al.
[2021] while our assumption allows for heavy-tailed distributions such as the Student’s t. To derive
the stationary distribution near the optimum, we approximate the loss function as a quadratic convex
function f(x) = 1

2x
⊤Hx, a standard approach in the literature [Ge et al., 2015, Levy, 2016, Jin et al.,

2017, Poggio et al., 2017, Mandt et al., 2017, Compagnoni et al., 2023].

About notation, ni is the number of data points in the local dataset of the i-th agent, η > 0 is the
learning rate, and the batches {γk} have size B ≥ 1 and are modeled as i.i.d. random variables uniformly
distributed over {1, . . . , ni}. Finally, Wt is the Brownian motion.

The following definition formalizes in which sense an SDE can be “reliable” in modeling an opti-
mizer.

Definition 3.1 (Weak Approximation). A continuous-time stochastic process {Xt}t∈[0,T ] is an order α
weak approximation of a discrete stochastic process {xk}

⌊T/η⌋
k=0 if for every polynomial growth function

g, there exists a positive constant C, independent of the stepsize η, such that

max
k=0,...,⌊T/η⌋

|Eg (xk)− Eg (Xkη)| ≤ Cηα.

Rooted in the numerical analysis of SDEs Mil’shtein [1986] this definition quantifies the discrepancy
between the continuous-time model Xt and discrete-time process xk.

3.1 Distributed SGD

In this section, we derive an SDE model for Distributed SGD whose update rule is

xk+1 = xk −
η

N

N∑
i=1

∇fγi(xk). (1)

Though not surprising, the following results serve as a reference point for analyzing other optimizers in
the subsequent sections. The first shows the SDE of DSGD which we validate in Figure 1 on a simple
landscape.

Theorem 3.2 (Informal Statement of Theorem A.8). The SDE of DSGD is

dXt = −∇f(Xt)dt+

√
η

NB

√
Σ̂(Xt)dWt, (2)

where Σ̂(x) := 1
N

∑N
i=1Σi(x) is the average of the covariance matrices of the N agents.

1We omit the size of the batch γ unless relevant.
2See Jastrzebski et al. [2018] for the justification why this might be the case.
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Effectively, the SDE above extends the single-node case presented by Li et al. [2017], where the batch
size B is replaced by BN . Using the SDE established in Theorem 3.2, we derive the convergence rate
of DSGD for smooth functions that satisfy the PL condition Karimi et al. [2016].

Theorem 3.3. If f is µ-PL, L-smooth, Tr(Σi(x)) < Lσi , Lσ := 1
N

∑N
i=1 Lσi , and St := f(Xt)− f(X∗)

E [St] ≤ S0e
−2µt + (1− e−2µt)

ηLLσ

4µBN
. (3)

For the general smooth non-convex functions the convergence guarantees are given in the next theo-
rem.

Theorem 3.4. If f is L-smooth, we use a learning rate scheduler ηt such that ϕit =
∫ t
0 (ηs)

ids, ϕ1t
t→∞→ ∞,

ϕ2
t

ϕ1
t

t→∞→ 0, Lσ := 1
N

∑N
i=1 Lσi , and t̃ distributed as ηt̃

ϕ1
t
,

E
[
∥∇f(Xt̃)∥22

]
≤ f(X0)− f(X∗)

ϕ1t
+
ηLLσ

2BN

ϕ2t
ϕ1t

t→∞→ 0. (4)

Observations on convergence guarantees:

1. In Theorem 3.3, the decay is e−2µt, as in SGD;

2. In Theorem 3.3, the asymptotic expected loss scales inversely to N , i.e. DCSGD attains a linear
speedup with the number of agents N . Moreover, the stochastic term is proportional to the
condition number L

µ of the Hessian of the loss, and scales with the average variance Lσ of the
gradient noise which is also observed in earlier works [Garrigos and Gower, 2023];

3. Analogous conclusions hold in Theorem 3.4.

Scaling Rules: Preserving DSGD Performance

After an extensive hyperparameter tuning phase of a machine learning model, it is common to need
adjustments to the hyperparameters to accommodate new scenarios. For instance, when training LLMs,
larger batch sizes may be desirable to fully utilize newly available and larger GPUs, without the need to
repeat the fine-tuning process. Scaling rules offer theoretically grounded formulas that allow changes to
some hyperparameters while adjusting others to maintain specific performance metrics. These rules are
not strict but serve as guidelines to narrow down the hyperparameter search space. Common scaling
rules include the linear rule for SGD [Jastrzebski et al., 2018] that prescribes that the ratio of learning
rate and batch size must be kept constant and the far more complex square-root rule of Adam [Malladi
et al., 2022]. As we demonstrate next, we extend the linear scaling rule of SGD to the distributed
setting, thereby incorporating the number of agents. To establish this scaling rule, we seek a functional
relationship between the hyperparameters, ensuring that DSGD with a learning rate of η, batch size B,
and N agents achieves the same performance as with a learning rate of κη, batch size δB, and αN
agents. The next result shows the exact dependencies.

Proposition 3.5. The scaling rule to preserve the performance independently of δ, κ, and α is κ
αδ = 1.

3.2 Distributed Compressed SGD

Next, we study Distributed Compressed SGD whose update rule has a form as

xk+1 = xk −
η

N

N∑
i=1

Cξi (∇fγi(xk)) , (5)

where the stochastic compressors Cξi are independent for different i and satisfy (i) Eξi [Cξi(x)] = x
and (ii) Eξi

[
∥Cξi(x)− x∥22

]
≤ ωi∥x∥22 for some compression rates ωi ≥ 0. The following result shows

the SDE of DCSGD, which we believe to be a novel addition to the literature and reveals the unique
manner in which gradient noise and unbiased compression influence the dynamics of DCSGD — See
Figure 1 for its validation on a simple landscape and MLP training with Rand-k.
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Theorem 3.6 (Informal Statement of Theorem B.8). The SDE of DCSGD is

dXt = −∇f(Xt)dt+

√
η

N

√
Σ̃(Xt)dWt, (6)

where for Φξi,γi(x) := Cξi (∇fγi(x))−∇fγi(x)

Σ̃(x) =
1

N

N∑
i=1

(
Eξiγi

[
Φξi,γi

(x)Φξi,γi
(x)⊤

]
+Σi(x)

)
. (7)

The covariance matrix for DCSGD consists of the covariance matrix of DSGD plus an additional
component due to the compression, e.g. for k-Sparsification, Σ̃(x) =

(
d
k − 1

) (
∇f(x)∇f(x)⊤ + Σ̂(x)

)
+

Σ̂(x).

We derive convergence rates for the loss value and gradient norm by leveraging the SDE derived in
Theorem 3.6: These recover the best known results in the literature [Khirirat et al., 2018, Li and
Richtárik, 2020, Philippenko and Dieuleveut, 2024], thus testifying that SDEs provide the community
with a powerful alternative technique that allows for a precise analysis of optimizers. We start with the
convergence guarantees for PL functions.

Theorem 3.7. If f is µ-PL, L-smooth, ω =
∑N

i=1 ωi

N , Tr(Σi(x)) < Lσi, Lσ :=
∑N

i=1 Lσi
N , ωLσ :=∑N

i=1 ωiLσi
N , St := f(Xt)− f(X∗), and ∆ := 1− ηL2ω

2µN , then

E [St] ≤ S0e
−2µ∆t +

(
1− e−2µ∆t

) ηL (Lσ + ωLσ

)
4µBN∆

. (8)

The next theorem offers a new and general condition on the learning rate scheduler to ensure the
convergence of DCSGD for the general non-convex case.

Theorem 3.8. If f is L-smooth and the learning rate scheduler ηt is such that ϕit =
∫ t
0 (ηs)

ids,

ϕ1t
t→∞→ ∞, ϕ2

t

ϕ1
t

t→∞→ 0, ηt < 2N
ηLω , and S0 := f(X0)− f(X∗) then, E

[
∥∇f(Xt̃)∥22

]
is smaller than

1

1− ηLω
2N

ϕ2
t

ϕ1
t

(
S0
ϕ1t

+
ϕ2t
ϕ1t

ηL
(
Lσ + ωLσ

)
2BN

)
t→∞→ 0, (9)

where t̃, is a random time with distribution ηt̃−
ηLω
2N

(ηt̃)
2

ϕ1
t−

ηLω
2N

ϕ2
t

.

Observations on convergence guarantees:

1. The decay e−2µ∆t of DCSGD is strictly slower than that of DSGD: ∆ crucially depends on the
average rate of compression ω, the condition number, and the number of agents. Specifically,
larger compression implies a slower convergence in comparison with DSGD, which is
exacerbated for ill-conditioned landscapes;

2. ∆ needs to be positive to ensure convergence, which imposes limitations on the hyperparameters.
For example, η < 2µN

L2ω
: More agents allow for a larger learning rate, but a larger compression

rate or an ill-conditioned landscape restricts it. Violating such prescriptions might lead to
divergence (See left of Figure 8 for empirical validation);

3. DCSGD enjoys a linear speedup: The asymptotic loss level in Theorem 3.7 scales inversely
to the number of agents N and has an additional term ωLσ w.r.t. DSGD (Theorem 3.3)
which quantifies the nonlinear interaction between the compression and gradient noise. See the
center-left and -right of Figure 8 for empirical validation).

6



0 200 400 600 800 1000
Iterations

100

4 × 10 1

6 × 10 1

2 × 100

Lo
ss

Valid. of Scaling Rules - ViT

DSGD( , B, N)
DCSGD( , B, , N)
DCSGD( , B, , (1 + )N)
DCSGD( , B, , (1 + )N)
DCSGD( , B, , (1 + )N)
DCSGD( , (1 + )B, , N)
DCSGD( , (1 + )B, , N)
DCSGD( , B, , N)

0 200 400 600 800 1000
Iterations

2 × 100

3 × 100

Lo
ss

Valid. of Scaling Rules - ResNet

DSGD( , B, N)
DCSGD( , B, , N)
DCSGD( , B, , (1 + )N)
DCSGD( , B, , (1 + )N)
DCSGD( , B, , (1 + )N)
DCSGD( , (1 + )B, , N)
DCSGD( , (1 + )B, , N)
DCSGD( , B, , N)

Figure 2: Validation of Scaling Rules: Consistently with Prop. 3.9, DCSGD run with hyperparameters
that follow the scaling rules listed in Table 1 (marked in green in the legends) recover the performance
of DSGD(η,B,N). Those that do not (marked in red) fail to do so. On the left, we plot the training
loss of a ViT for some rules while on the right we do the same for a ResNet. Details are in Appendix F.

Scaling Rules: Recovering DSGD Performance

As previously noted, when using the same learning rate η, batch size B, and N agents, DCSGD is slower
and less optimal than DSGD. To address this, we propose deriving novel, actionable, and interpretable
scaling rules to adjust the hyperparameters of DCSGD to recover the asymptotic performance of DSGD.
The following result shows these rules under the simplifying assumption that Lσi = Lσ, ωi = ω, for
i ∈ [N ], and N ≫ 1. We defer to Proposition B.12 for the general cases. We validate some of these rules
in Figure 2 for a ViT and a ResNet. See Appendix G for the validation on a 124M GPT2 model.

Proposition 3.9. Let DCSGD(κη, δB, βω, αN) run with batch size δB, learning rate κη, compression
rates βω, and αN agents. Table 1 shows scaling rules to recover the asymptotic performance of
DSGD(η,B,N):3

Scaling Rule Implication
α = 1 + βω CR ↑ =⇒ Agents ↑
α = κ(1 + ω) LR ↑ =⇒ Agents ↑
α = 1+ω

δ BS ↓ =⇒ Agents ↑
κ = 1

1+βω CR ↑ =⇒ LR ↓
δ = 1 + βω CR ↑ =⇒ BS ↑
κ = δ

1+ω BS ↑ =⇒ LR ↑

Table 1: Scaling Rules to recover DSGD performance. For example, compression can be countered by
increasing the number of agents (CR = Compression Rate, LR = Learning Rate, and BS = Batch Size).

Observations on scaling rules:

1. In the absence of compression, the scaling rules all reduce to that of DSGD (See Proposition 3.5);

2. For example, to achieve comparable performance between DSGD and DCSGD with compression
factor ω, the number of agents can be increased to (1 + ω)N . Alternatively, one can further
increase compression (β > 1) and compensate by increasing the number of agents to (1 + βω)N .
Similarly, one can decrease the learning rate to η

1+ω , or increase the batch size to B(1 + ω).

3For practical reasons, we only show those involving two hyperparameters while the other two are kept constant.

7



3.3 Distributed SignSGD

Now we turn to derive an SDE for DSignSGD, a biased compression method with update rule

xk+1 = xk −
η

N

N∑
i=1

sign(∇fγi(xk)). (10)

This derivation reveals how sign compression interacts with the gradient noise in determining the
dynamics of DSignSGD. In particular, we focus on the role of the level of the gradient noise, e.g.
standard deviation or scale, and of the fatness of the tails of its distribution. See Compagnoni et al.
[2025] for a comparison between SignSGD and RMSprop, Adam, and AdamW in the single-node
case.

Theorem 3.10 (Informal Statement of Theorem C.9). The SDE of DSignSGD is

dXt = − 1

N

N∑
i=1

(1− 2P(∇fγi(Xt) < 0)) dt+

√
η

N

√
Σ(Xt)dWt, (11)

where Σ(x) :=
∑N

i=1 Σi(x)
N , Σi(x) = E[ξγi(x)ξγi(x)⊤], and ξγi(x) := sign(∇fγi(x))− 1 + 2P(∇fγi(x) < 0)

is the noise around sign (∇fγi(x)).

For interpretability reasons, we present a corollary with a flexible gradient noise assumption that
interpolates between the Cauchy (heavy-tailed) and Gaussian (light-tailed) distributions: ∇fγi

(x) =

∇f(x) +
√

Σi

B Zi, Zi ∼ tν(0, Id), ν are the degrees of freedom, and scale matrices Σi = diag(σ2
1,i, · · · , σ2

d,i).
This allows us to parse the dynamics of DSignSGD into three distinct phases depending on the
size of the signal-to-noise ratios Y i

t :=
√
BΣ

− 1
2

i ∇f(Xt). This is visually supported in the bottom-right of
Figure 1 on a convex quadratic function.

The following results involve several quantities, highlighted using colors for clarity: Pink indicates
dependence on the degrees of freedom ν, related to the concept of fatness of the noise, while blue
corresponds to the level of noise.

Proposition 3.11. For some constants q+
ν , q−

ν , mν , ℓν , and ψν that depend on the degrees of freedom
ν,4 the dynamics of DSignSGD has three phases:

1. Phase 1: If
∣∣Y i

t

∣∣ > ψν , the SDE coincides with the ODE of SignGD:

dXt = − sign(∇f(Xt))dt; (12)

2. Phase 2: If 1 <
∣∣Y i

t

∣∣ < ψν and Yt :=
∑N

i=1 Y
i
t

N : P
[
∥Xt − E [Xt]∥22 > a

]
≤ η

a

[
d−

∑N
i=1∥mνY

i
t +q−

ν ∥2
2

N

]
;

3. Phase 3: If
∣∣Y i

t

∣∣ < 1, the SDE is

dXt = −ℓν

(√
B

N

N∑
i=1

Σ
− 1

2
i

)
∇f(Xt)dt+

√
η

N

√√√√Id −
ℓ2νB

N

N∑
i=1

diag
(
Σ

− 1
2

i ∇f(Xt)
)2
dWt.

Observation on SDEs:

1. The behavior of DSignSGD depends on the size of the signal-to-noise ratios;

2. In Phase 2 and Phase 3, the inverse of the level of the noise Σ
− 1

2
i premultiplies the gradient, thus

affecting the rate of descent: The larger the scale, the slower the dynamics. This is not the
case for DCSGD where the Σi only influence the diffusion term;

3. The degrees of freedom ν of the Student’s t parametrize the fatness of the tails of the noise
distribution: The smaller ν, the fatter the tails and the smaller mν and ℓν5 — Fatter tails imply
that the average dynamics of Xt is slower and exhibits more variance.

4See Proposition C.11 for their definition.
5For example, ℓ1 = 2

π
, ℓ2 = 1√

2
, and ℓ∞ =

√
2
π
.
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Figure 3: Validation of Bounds: As prescribed by Theorem 3.12, the bounds match or dominate
the empirical loss of DSignSGD on a quadratic convex function in all three phases (Left); As per
Theorem 3.12, DSignSGD achieves linear speedup: More agents imply lower loss (Right);

To better understand the role of the noise, we need to study how its level and fatness affect the dynamics
of the expected loss. The tightness of these bounds is empirically verified on the left of Figure 3.

Theorem 3.12. Let f be µ-strongly convex, Tr(∇2f(x)) < Lτ , Σi ≤ σ2max,i, St := f(Xt)− f(X∗), and
σH,j be the harmonic mean of {(σmax,i)

j}. Then,

1. In Phase 1, St ≤ 1
4

(√
µt− 2

√
S0
)2: DSignSGD stays in this phase for at most t∗ = 2

√
S0
µ ;

2. In Phase 2, for ∆ := mν

√
Bσ−1

H,1 +
ηBµm2

ν
2N σ−1

H,2,

E[St] ≤ S0e
−2µ∆t +

η(Lτ − µdq̂2ν)

2N

1

2µ∆

(
1− e−2µ∆t

)
;

3. In Phase 3, for ∆ := ℓν
√
Bσ−1

H,1 +
ηBµℓ2ν
2N σ−1

H,2,

E[St] ≤ S0e
−2µ∆t +

ηLτ

2N

1

2µ∆

(
1− e−2µ∆t

)
.

Observations on Convergence - PL:

1. The dynamics of Phase 1 ensures a steady decrease of St independently of the noise, which triggers
the emergence of Phase 2;

2. During Phase 2 and Phase 3, the exponential decay of the loss strongly depends on the noise
distributional properties: It scales inversely to the noise level σH,1 and proportionally to the
fatness of the tails ℓν , meaning that larger noise and fatter tails imply a slower convergence;

3. The asymptotic loss level achieves a linear speedup with N , scales inversely to ℓν and
proportionally to σH,1: More agents imply lower loss (see right of Figure 3) while fatter tails and
larger noise imply larger loss (Section 4 for a discussion and empirical validation).

The next theorem shows a general condition on the learning rate scheduler to ensure the convergence of
DSignSGD for the general non-convex case. Interestingly, it sheds light on how DSignSGD reduces
different gradient norms (L1 and L2) across different phases.
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Figure 4: Validation of Scaling Rules: Consistently with Proposition C.15, DSignSGD run with
hyperparameters that follow our scaling rule (in green in the legends) recover the performance of
DSignSGD(η,B,N). The one that does not (in red) fails to do so. On the left, we plot the training
loss of a ViT for some rules while on the right we do the same for a ResNet. Details in Appendix F.

Theorem 3.13. Let f be L-smooth, the learning rate scheduler ηt s.t. ϕit =
∫ t
0 (ηs)

ids, ϕ1t
t→∞→ ∞,

ϕ2
t

ϕ1
t

t→∞→ 0, Σi ≤ σ2max,i, and S0 := f(X0)− f(X∗). Then,

1. In Phase 1, ∥∇f (Xt̃1)∥1 ≤ S0

ϕ1
t

t→∞→ 0;

2. In Phase 2,

E∥∇f (Xt̃(1,2))∥
2
2 +

q̂νσH,1

mν

√
B
E∥∇f (Xt̃(2,2))∥1 ≤

σH,1

ϕ1tmν

√
B

(
S0 +

ηLdϕ2t
2N

)
t→∞→ 0; (13)

3. In Phase 3, E∥∇f (Xt̃3)∥22 is smaller than

σH,1

ϕ1t ℓν
√
B

(
S0 +

ηLdϕ2t
2N

)
t→∞→ 0. (14)

Above, t̃1, t̃(1,2), t̃(2,2), and t̃3 are random times with distribution ηt
ϕ1
t
.

Observations on Convergence - Non-convex:

1. DSignSGD implicitly minimizes the L1 norm of the gradient in Phase 1, a linear combination of
L1 and L2 norm in Phase 2, and transitions to optimizing the L2 norm in Phase 3;

2. Large and fat noise slow down the convergence;

3. Note that [Safaryan and Richtarik, 2021] derived convergence guarantees for a mixture of L1 and
L2 norms. This mixture reduces to a rescaled L1 norm when the gradients are large (similarly
to our Phase 1) and to a rescaled L2 norm when the gradients are small (as in our Phase 3).
However, we highlight that our rates reveal exactly how all parameters affect the rate while in
[Safaryan and Richtarik, 2021] these dependencies are hidden in the mixed norm.

We conclude by observing that not all biased compressors can handle fat noise, e.g. Top-k fails as well,
while a slight modification is promising — See Figure 10.
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Scaling Rules: Preserving Performance

Under the simplifying assumption that N ≫ 1, the following result provides intuitive scaling rules for
DSignSGD, while Proposition C.15 presents the general cases. We validate some rules in Figure 4 on a
ViT and a ResNet. See Appendix G for the validation on a 124M GPT2.

Proposition 3.14. Let the batch size be δB, learning rate κη, αN agents, and N ≫ 1. The scaling rule
to preserve the performance indep. of δ, κ, α, is κ

α
√
δ
= 1.

Observations:

1. If α = 1, this rule coincides with Adam’s Compagnoni et al. [2025];

2. For example, while preserving the performance of DSignSGD run with η, B, and N , one can
increase the batch size to κ2B, the learning rate to κη, and keep N agents. Alternatively, keep
the learning rate to η but increase the batch size to κ2B and decrease the number of agents down
to N

κ .

Stationary Distribution. The stationary distribution of a process characterizes its behavior at
convergence. Proposition C.16, shows that of DSignSGD: The main takeaway is that the covariance
matrix of the iterates scales linearly in the noise level. In contrast, Proposition B.13 shows that
the scaling is quadratic for DCSGD with k-Sparsification. These findings are novel and are empirically
validated in Figure 9.

4 Heavy and Large Noise

In this section, we recap our findings regarding the behavior of D(C)SGD and DSignSGD w.r.t. how
fat, i.e. how heavy-tailed the noise is, and its level, i.e. its standard deviation or scale. We validate our
results as we inject Gaussian or Student’s t-distributed noise on the full gradient of a ViT trained on
MNIST.

Theoretically and practically, DCSGD diverges if the noise is fat, i.e., does not admit bounded first
or second moments (upper-left of Figure 5). Provided that the noise admits a finite second moment, as
per Theorem 3.7, DCSGD converges to an asymptotic loss level that scales quadratically with the
noise level σ: The upper-right of Figure 5 shows this on a ViT while Figure 11 validates the tightness
of the bounds derived in Theorem 3.7 on a quadratic convex function for several noise levels.

In contrast, Theorem 3.12 shows that DSignSGD converges even if the noise has an unbounded
expected value. In particular, the fatness of the tails influences both the convergence speed and
the asymptotic loss level: Fatter and larger noise implies a slower convergence to a larger
asymptotic level (bottom-left of Figure 5). Additionally, the asymptotic loss level of DSignSGD scales
(approximately) linearly with the noise level: The bottom-right of Figure 5 show this on a ViT while
Figure 11 demonstrates the tightness of the bounds derived in Theorem 3.12 on a quadratic convex
function for several noise levels.

5 Conclusions

We derived the first formal SDE models for DSGD, DCSGD, and DSignSGD, enabling us to elucidate
the complex and different ways in which unbiased and sign compression interact with gradient noise.
We started by showcasing the tightness of our analysis as we recovered and empirically validated the best
known convergence results for DSGD and DCSGD: 1) We quantified how unbiased compression slows
down the convergence of DCSGD w.r.t. DSGD, and showed that the noise level does not impact
the convergence speed; 2) Unbiased compression and noise level interact nonlinearly by negatively
affecting the asymptotic loss level of DCSGD w.r.t. DSGD. For DSignSGD, we 3) proved that sign
compression implies that noise level does influence the speed of convergence as larger noise slows
it down; 4) While the asymptotic loss level of DCSGD scales quadratically in the noise level, that of
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Figure 5: Empirical validation of the insights derived from Theorem 3.7 and Theorem 3.12: i) DCSGD
cannot handle fat noise - The loss diverges if ν = 1 and is non-stationary if ν = 2 (Upper-Left); ii)
The loss diverges more and more for larger noise (Upper-Right); DSignSGD converges even when the
noise is fat, although fatter noise implies less optimality (Bottom-Left); DSignSGD never diverges
even when noise becomes increasingly larger (Bottom-Right).

DSignSGD does so linearly; 5) DSignSGD is resilient to heavy-tailed noise and converges even
when this has an unbounded expected value. Much differently, an unbounded variance of the noise
is already enough for DCSGD to diverge. 6) Importantly, we prove that DSignSGD achieves linear
speedup; 7) Finally, we derive novel scaling rules for DCSGD and DSignSGD, providing intuitive
and actionable guidelines for selecting hyperparameters. These rules ensure that the performance of
the algorithms is preserved, even allowing DCSGD to recover the performance of its uncompressed
counterpart and DSignSGD to preserve it. Finally, we verify our results on a variety of deep learning
architectures and datasets.

Future work. Our analysis can be extended to other practical optimizers, such as Top-k or DSignSGD
with majority vote Bernstein et al. [2019]. Moreover, the insights derived from our SDE analysis provide
a foundation for developing new optimization algorithms that integrate the strengths of current methods
while addressing their limitations. Finally, it is possible to extend most of our results to the heterogeneous
federated setting, up to some adjustments in the regularity of the local loss functions.
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A Theoretical framework - Weak Approximation

In this section, we introduce the theoretical framework used in the paper, together with its assumptions
and notations.

First of all, many proofs will use Taylor expansions in powers of η. For ease of notation, we introduce
the shorthand that whenever we write O (ηα), we mean that there exists a function K(x) ∈ G such
that the error terms are bounded by K(x)ηα. For example, we write

b(x+ η) = b0(x) + ηb1(x) +O
(
η2
)

to mean: there exists K ∈ G such that

|b(x+ η)− b0(x)− ηb1(x)| ≤ K(x)η2.

Additionally, we introduce the following shorthand:

• A multi-index is α = (α1, α2, . . . , αn) such that αj ∈ {0, 1, 2, . . .};

• |α| := α1 + α2 + · · ·+ αn;

• α! := α1!α2! · · ·αn!;

• For x = (x1, x2, . . . , xn) ∈ Rn, we define xα := xα1
1 xα2

2 · · ·xαn
n ;

• For a multi-index β, ∂|β|β f(x) := ∂|β|

∂
β1
x1

∂
β2
x2

···∂βn
xn

f(x);

• We also denote the partial derivative with respect to xi by ∂ei .

Definition A.1 (G Set). Let G denote the set of continuous functions Rd → R of at most polynomial
growth, i.e. g ∈ G if there exists positive integers ν1, ν2 > 0 such that |g(x)| ≤ ν1

(
1 + |x|2ν2

)
, for all

x ∈ Rd.

Definition A.2 (Ck
b (Rn,R)). Ck

b (Rn,R) denotes the space of functions whose k-th derivatives are
bounded.

A.1 Assumptions.

In general, we assume some regularity in the loss function.

Assumption A.3. Assume that the following conditions on f, fi ∈ C8
b (Rn,R), and their gradients

are satisfied:
• ∇f,∇fi satisfy a Lipschitz condition: there exists L > 0 such that

|∇f(u)−∇f(v)|+
n∑

i=1

|∇fi(u)−∇fi(v)| ≤ L|u− v|;

• f, fi and its partial derivatives up to order 7 belong to G;
• ∇f,∇fi satisfy a growth condition: there exists M > 0 such that

|∇f(x)|+
n∑

i=1

|∇fi(x)| ≤M(1 + |x|).

Regarding the gradient noise, each optimizer has its mild assumptions which are weaker or in line with
the literature.
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DSGD

1. The covariance matrices Σi(x) are Definite Positive;

2. Their square roots
√
Σi(x) are: In G together with their derivatives, Lipschitz, bounded, and

satisfy Affine Growth Malladi et al. [2022].

DCSGD Additionally w.r.t. DSGD, DCSGD requires:

1. The gradient noise Z(x) admits a strictly positive density function gx for all x and require that
g : Rn × Rn → [0,∞) s.t. (x, y) 7→ gx(y) is in C8(Rn × Rn) such that all partial derivatives of g
up to order 8 are integrable with respect to y and s.t. their L1-norms are uniformly bounded in x.
This assumption covers Gaussian and Student’s t, thus being more general than the literature.
Indeed, the Gaussianity of the noise is commonly assumed: Among others, see Ahn et al. [2012],
Chen et al. [2014], Mandt et al. [2016], Stephan et al. [2017], Zhu et al. [2019], Wu et al. [2020],
Xie et al. [2021], while Jastrzebski et al. [2018] offers an intuitive justification as well;

2. Bounded and closed domain Shamir and Srebro [2014], Wang et al. [2017], Zhao et al. [2018], Yu
et al. [2019], Aviv et al. [2021], Ayache et al. [2023], Marfoq et al. [2023], Deng et al. [2024]: This
assumption is not restrictive in our case. Indeed, our contribution regarding DCSGD is not to
prove their convergence, which has been proven before [Khirirat et al., 2018, Li and Richtárik,
2020], but rather the scaling rules in Prop. 3.9. Since convergence has already been guaranteed,
we can assume the domain to be closed and bounded without loss of generality while still providing
insightful and actionable results. Additionally, this is also assumed in the seminal paper for this
theoretical framework Li et al. [2019];

3. For all compact sets K
sup
x∈K

|g(x, ·)| ∈ L1(Rn),

which of course covers the Gaussian case, thus being more general than the literature.

DSignSGD On top of the assumptions 1. and 3. of DCSGD, we need the functions in Eq. 16 to
be in G, which, as we show below, covers Gaussian and Student’s t, thus being more general than the
literature.

Remark All the assumptions above are in line with or more general than those commonly found in the
literature. In line with Remark 11 of the seminal paper Li et al. [2019], we observe that while some of
these assumptions might seem strong, loss functions in applications have inward pointing gradients for
sufficiently large x. Therefore, we could simply modify the loss to satisfy the assumptions above.

Regarding the drift and diffusion coefficients, we highlight that many papers in the literature following
this framework do not check for their regularity before applying the approximation theorems Hu et al.
[2019], An et al. [2020], Zhu and Ying [2021], Cui et al. [2020], Maulén Soto [2021], Wang and Mao
[2022], Compagnoni et al. [2023, 2024], Li et al. [2017]. At first sight, it would seem that not even
the seminal paper Li et al. [2019] checks these conditions carefully. However, a deeper investigation
shows that they are restricting their analysis to compact sets to leverage the regularity and convergence
properties of mollifiers: The assumption regarding the compactness of the domain is not highlighted
nor assumed in any part of the paper. Therefore, we conclude that, willingly or not, most papers are
implicitly making these assumptions.

A.2 Technical Results

In this subsection, we provide some results that will be instrumental in the derivation of the SDEs.

Lemma A.4. Assume the existence of a probability density gx of the gradient noise Z(x) for all x and
require that g : Rn ×Rn → [0,∞) ; (x, y) 7→ gx(y) is in C8(Rn ×Rn) such that all partial derivatives of
g up to order 8 are integrable with respect to y and such that their L1−norms are uniformly bounded
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in x. Further, let f ∈ C8(Rn) and h : Rn → R be a bounded Borel measurable function. Define the
function k by

k(x) = E [h(∇fγ(x))] .

Then there exists a version k̂ of k with k̂ ∈ C7
b (Rn).

Proof. Let φ be smooth and compactly supported. Then for all multiindices β with |β| ≤ 8, substitution,
Fubini‘s theorem, and integration by parts imply that∫

Rn

k(x)∂
|β|
β φ(x)dx =

∫
Rn

E [h(∇fγ(x))] ∂|β|β φ(x)dx

=

∫
Rn

∫
Rn

h(y)gx(y −∇f(x))dy∂|β|β φ(x)dx

= (−1)|β|
∫
Rn

∫
Rn

h(y)∂
|β|
β (gx(y −∇f(x)))dyφ(x)dx.

So ∫
Rn

h(y)∂
|β|
β (gx(y −∇f(x)))dy

is a weak derivative ∂|β|β k of k on any bounded open set. For compact sets K we obtain that∫
K

∣∣∣∣∫
Rn

h(y)∂
|β|
β (gx(y −∇f(x)))dy

∣∣∣∣p dx
≤ ∥h∥p∞ λn(K)

(
sup
x∈Rn

∫
Rn

∣∣∣∂|β|β (gx(y −∇f(x)))
∣∣∣ dy)p

<∞

for all p ≥ 2 because of our assumptions on g and f and substitution (λn Lebesgue measure). So it
follows from Sobolev embeddings with respect to Hölder spaces that for all bounded and open sets Ω
there exists a version k̂ of k such that k̂ ∈ C7(Ω). The latter version can be extended to Ω = Rn, which
we also denote by k̂. Since ∂|β|β k is bounded for |β| ≤ 8, we conclude that k̂ ∈ C7

b (Rn).

Lemma A.5. Assuming that for all compact sets K

sup
x∈K

|g(x, ·)| ∈ L1(Rn),

and the positivity of the density functions, we have that for m = 1, . . . , 7 that∥∥∥∂j1 . . . ∂jmA1/2(x)
∥∥∥ ≤ Clm(x), (15)

where the function lm(x) is defined as

lm(x) :=

m−1∑
r=0

(
1

m(x) + s(x)(n− 1)1/2

(
1 +

2s(x)(n− 1)1/2

m(x)− s(x)(n− 1)−1/2

))−(r+1/2)

× max
|β|≤m

∥∥∥∂|β|β A(x)
∥∥∥r+1

. (16)

Proof. To prove this, we need the fact that the Fréchet derivatives of the square root function φ can be
represented as follows (see Theorem 1.1 in Del Moral and Niclas [2018]):

∇φ(A)[H] =

∫ ∞

0
e−tφ(A)He−tφ(A)dt,

and higher derivatives of order m ≥ 2 are given by

∇mφ(A)[H, . . . ,H] = −∇φ(A)

 ∑
p+q=m−2

m!

(p+ 1)!(q + 1)!
(∇p+1φ(A)[H, . . . ,H])

×(∇q+1φ(A)[H, . . . ,H])
]

(17)
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for all A ∈ S and symmetric n× n matrices H. Moreover, we have the following estimate for m ≥ 0:∥∥∇m+1φ(A)
∥∥ ≤ (

√
n)m(m+ 1)!Cm2−2(m+1)λmin(A)

−(m+1/2), (18)

where λmin(A) > 0 is the smallest eigenvalue of A and Cm := 1
m+1

(
2m
m

)
.

We find that ∂lA1/2(x) = ∇φ(A(x))[∂lA(x)] and

∂j∂lA
1/2(x) = ∇2φ(A(x))[∂jA(x), ∂lA(x)] +∇φ(A(x))[∂j∂lA(x)].

Thus, it follows from Eq. (18) that∥∥∥∂lA1/2(x)
∥∥∥ ≤ Cλmin(A(x))

−1/2 ∥∂lA(x)∥ ,

and ∥∥∥∂j∂lA1/2(x)
∥∥∥ ≤ C1λmin(A(x))

−(1+1/2) ∥∂jA(x)∥ ∥∂lA(x)∥

+C2λmin(A(x))
−1/2 ∥∂j∂lA(x)∥ .

More generally, for m = 1, . . . , 7,

∥∥∥∂j1 . . . ∂jmA1/2(x)
∥∥∥ ≤ Cm

{
m−1∑
r=0

λmin(A(x))
−(r+1/2)

× max
|β|≤m

∥∥∥∂|β|β A(x)
∥∥∥r+1

}
. (19)

Let us now provide a lower bound for λmin(A(x)) in terms of tr(A(x)) and tr((A(x))2). Define

s2(x) = n−1

(
tr((A(x))2)− (tr(A(x)))2

n

)
, m(x) =

tr(A(x))

n
.

Then, from Corollary 2.1, Corollary 2.2, and Theorem 2.1 in Wolkowicz and Styan [1980], we obtain

1

λmin(A(x))
≤ 1

λmax(A(x))

(
1 +

2s(x)(n− 1)1/2

m(x)− s(x)(n− 1)−1/2

)

≤ 1

m(x) + s(x)(n− 1)1/2

(
1 +

2s(x)(n− 1)1/2

m(x)− s(x)(n− 1)−1/2

)
.

Therefore, from Eq. (19), we have for m = 1, . . . , 7 that∥∥∥∂j1 . . . ∂jmA1/2(x)
∥∥∥ ≤ Clm(x), (20)

where the function lm(x) is defined as

lm(x) :=
m−1∑
r=0

(
1

m(x) + s(x)(n− 1)1/2

(
1 +

2s(x)(n− 1)1/2

m(x)− s(x)(n− 1)−1/2

))−(r+1/2)

× max
|β|≤m

∥∥∥∂|β|β A(x)
∥∥∥r+1

. (21)
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The following results are key to guarantee that an SDE is a weak approximation of an optimizer.

Proposition A.6 (Proposition 1 Li et al. [2017]). Let 0 < η < 1. Consider a stochastic process
Xt, t ≥ 0 satisfying the SDE

dXt = b (Xt) dt+
√
ησ (Xt) dWt

with X0 = x ∈ Rd and b, σ together with their derivatives belong to G. Define the one-step
difference ∆ = Xη − x, and indicate the i-th component of ∆ with ∆i. Then we have

1. E∆i = biη +
1
2

[∑d
j=1 bj∂ejbi

]
η2 +O

(
η3
)

∀i = 1, . . . , d;

2. E∆i∆j =
[
bibj + σσT(ij)

]
η2 +O

(
η3
)

∀i, j = 1, . . . , d;

3. E
∏s

j=1∆(ij) = O
(
η3
)

for all s ≥ 3, ij = 1, . . . , d.
All functions above are evaluated at x.

Theorem A.7 (Theorem 2 and Proposition 5, Mil’shtein [1986]). Let Assumption A.3 hold and
let us define ∆̄ = x1 − x to be the increment in the discrete-time algorithm, and indicate the i-th
component of ∆̄ with ∆̄i. If in addition there exists K1,K2,K3,K4 ∈ G so that

1.
∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d;

2.
∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d;

3.
∣∣∣E∏s

j=1∆ij − E
∏s

j=1 ∆̄ij

∣∣∣ ≤ K3(x)η
2, ∀s ≥ 3, ∀ij ∈ {1, . . . , d};

4. E
∏3

j=1

∣∣∆̄ij

∣∣ ≤ K4(x)η
2, ∀ij ∈ {1, . . . , d}.

Then, there exists a constant C so that for all k = 0, 1, . . . , N we have

|Eg (Xkη)− Eg (xk)| ≤ Cη.

A.3 Limitations

Modeling of discrete-time algorithms using SDEs relies on Assumption A.3. As noted by Li et al. [2021],
the approximation can fail when the stepsize η is large or if certain conditions on ∇f and the noise
covariance matrix are not met. Although these issues can be addressed by increasing the order of
the weak approximation, we believe that the primary purpose of SDEs is to serve as simplification
tools that enhance our intuition: We would not benefit significantly from added complexity. Regarding
the assumptions on the noise, ours are in line with or more general than those commonly used in the
literature.

Another aspect concerns the discretization of SDEs. While our approach has been to experimentally
verify that the SDE tracks the evolution of the corresponding discrete algorithms and supports our
theoretical insights, alternative theoretical frameworks exist. Notably, backward error analysis offers a
promising direction, as it can clarify the role of finite learning rates and help identify different optimizers’
implicit biases. This approach has been successfully used to derive higher-order modified equations for
SGD Smith et al. [2021] and Adam Cattaneo et al. [2024]. While our work does not include such an
analysis, many influential papers Koloskova et al. [2020], Mil’shtein [1986], Zhou et al. [2020] similarly
omit it. Given that most papers modeling optimizers with SDEs either lack experimental validation or
restrict it to artificial landscapes, we take an extra step by validating our insights across various deep
neural networks and datasets. To our knowledge, only Paquette et al. [2021], Compagnoni et al. [2023]
have conducted experiments involving neural networks, and even then, with relatively small models.
In contrast, our extensive experiments demonstrate that our insights apply to realistic scenarios, as
confirmed by our numerical results.

Finally, while SDEs benefit from Itô Calculus which allows us to study general non-convex loss functions,
we had to focus on simple noise structures. Differently, Stochastic Approximation enables a more
fine-grained and insightful analysis for very general noise structures (e.g. multiplicative noise), but
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often forces the analysis to focus on quadratic losses Philippenko and Dieuleveut [2024].

A.4 Distributed SGD

This subsection provides the first formal derivation of an SDE model for DSGD. Let us consider the
stochastic process Xt ∈ Rd defined as the solution of

dXt = −∇f(Xt)dt+

√
η

N

√
Σ̂(Xt)dWt, (22)

where Σ̂(x) := 1
N

∑N
i=1Σi(x) is the average of the covariance matrices of the N agents.

Theorem A.8 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let
xk ∈ Rd, 0 ≤ k ≤ N denote a sequence of DSGD iterations defined by Eq. equation 1. Consider
the stochastic process Xt defined in Eq. equation 22 and fix some test function g ∈ G and suppose
that g and its partial derivatives up to order 6 belong to G.
Then, under the assumptions of Section A.1, there exists a constant C > 0 independent of η such
that for all k = 0, 1, . . . , N , we have

|Eg (Xkη)− Eg (xk)| ≤ Cη.

That is, the SDE equation 22 is an order 1 weak approximation of the DSGD iterations equation 1.

Proof. First, we calculate the expected value of the increments of DSGD:

E [xk+1 − xk] = E

[
− η

N

N∑
i=1

∇fγi(xk)

]
= −η∇f(xk); (23)

Then, we calculate the covariance matrix of the gradient noise of DSGD:

Σ̃(xk) = η2E

(∇f(xk)− 1

N

N∑
i=1

∇fγi(xk)

)∇f(xk)−
1

N

N∑
j=1

∇fγj (xk)

⊤
 (24)

=
η2

N

1

N

N∑
i,j=1

E
[
(∇f(xk)−∇fγi(xk))

(
∇f(xk)−∇fγj (xk)

)⊤] (25)

=
η2

N

1

N

N∑
i=1

E
[
(∇f(xk)−∇fγi(xk)) (∇f(xk)−∇fγi(xk))

⊤
]

(26)

=
η2

N

1

N

N∑
i=1

Σi(xk), (27)

where we use independence of (∇f(xk)−∇fγi(xk) for i ∈ [N ]. The thesis follows from Proposition A.6
and Theorem A.7 as drift and diffusion terms are regular by assumption.

Theorem A.9. If f is µ-PL, L-smooth, and Tr(Σi(x)) < Lσi

E [f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗)) e
−2µt +

ηLLσ

4µN
(1− e−2µt), (28)

where Lσ := 1
N

∑N
i=1 Lσi .
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Proof. Using Itô’s Lemma

d(f(Xt)− f(X∗)) = −∇f(Xt)
⊤∇f(Xt)dt+O(Noise) +

η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (29)

≤ −2µ(f(Xt)− f(X∗))dt+
ηLLσ

2N
dt+O(Noise), (30)

which implies the thesis.

Corollary A.10. Let the batch size be δB, learning rate κη, and αN agents. The scaling rule to
preserve the performance independently of δ, κ, and α is κ

αδ = 1.

Proof. It follows the same steps as Theorem A.8 to derive the SDE and Theorem A.9 to derive the
bound. Then, one needs to find the functional relationship between κ, α, and δ such that the bound
does not depend on them.

Theorem A.11. If f is L-smooth, we use a learning rate scheduler ηt such that ϕit =
∫ t
0 (ηs)

ids,

ϕ1t
t→∞→ ∞, ϕ2

t

ϕ1
t

t→∞→ 0, and Lσ := 1
N

∑N
i=1 Lσi

E
[
∥∇f(Xt̃)∥

2
2

]
≤ f(X0)− f(X∗)

ϕ1t
+
ηLLσ

2N

ϕ2t
ϕ1t

t→∞→ 0, (31)

where t̃ has distribution ηt̃
ϕ1
t
.

Proof. Using Itô’s Lemma and using a learning rate scheduler ηt during the derivation of the SDE of
Theorem A.8, we have

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+O(Noise) + (ηt)
2 η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (32)

≤ −ηt∥∇f(Xt)∥22dt+O(Noise) + (ηt)
2 ηLLσ

2N
dt. (33)

Let us now observe that since
∫ t
0

ηs
ϕ1
t
ds = 1, the function s 7→ ηs

ϕ1
t

defines a probability distribution
and let t̃ have that distribution. Then by integrating over time and by the Law of the Unconscious
Statistician, we have that

E
[
∥∇f(Xt̃)∥

2
2

]
=

1

ϕ1t

∫ t

0
∥∇f(Xs)∥22ηsds, (34)

meaning that

E
[
∥∇f(Xt̃)∥

2
2

]
≤ f(X0)− f(X∗)

ϕ1t
+
ηLLσ

2N

ϕ2t
ϕ1t

t→∞→ 0. (35)

B Distributed Compressed SGD with Unbiased Compression

This subsection provides the first formal derivation of an SDE model for DCSGD. Let us consider the
stochastic process Xt ∈ Rd defined as the solution of

dXt = −∇f(Xt)dt+

√
η

N

√
Σ̃(Xt)dWt, (36)

where for Φξi,γi(x) := Cξi (∇fγi(x))−∇fγi(x)

Σ̃(x) =
1

N

N∑
i=1

(
Eξiγi

[
Φξi,γi

(x)Φξi,γi
(x)⊤

]
+Σi(x)

)
. (37)

Before proceeding, we ensure that the SDE admits a unique solution and that its coefficients are sufficiently
regular.
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Lemma B.1. The drift term ∇f is Lipschitz, satisfies Affine Growth, and is in G together with all its derivatives.

Proof. This is obvious as we assume all of these conditions.

Regarding the diffusion term, we have that

Lemma B.2. The diffusion term Σ̃(x) satisfies Affine Growth.

Proof. Since ∥
√
Σ̃i(x)∥2 ≤ Tr(Σ̃i(x))

1
2 ≤ (ω∥∇f(x)∥22 + ∥Σi(x)∥∞(ω + 1))

1
2 , the linear growth of the gradient,

the boundedness of Σi, and that ∥A∥∞ ≤
√
d∥A∥2 for each matrix A.

Lemma B.3. Let us assume the same assumptions as Lemma A.4 and that the domain is closed and sufficiently
large.6 Additionally, assume that

sup
x∈K

|g(x, ·)| ∈ L1(Rn)

for all compact sets K. Then the entries of Σ̃ in Eq. 36 are in C7
b (Rn).

Proof. Since we are on a closed and sufficiently large domain, by the definition of Σ̃, dominated convergence,
and from the additional assumption on g, it follows that Σ̃ is continuous. So Lemma A.4 entails that the entries
of Σ̃ are in C7

b (Rn).

Lemma B.4. The diffusion term Σ̃(x) is Definite Positive.

Proof. By the definition of Σ̃(x) and the fact that Σi(x) are DP by assumption, the thesis follows.

Corollary B.5. Since Σ̃ is positive definite and its entries are in C7
b (Rn),

√
Σ̃ is Lipschitz.

Proof. The function
φ : S → S, A 7→

√
A

has Fréchet derivatives of any order on S (see e.g. Del Moral and Niclas [2018]). Therefore, Σ̃1/2 ∈ C7(Rn), and
since Σ̃ ∈ C7

b (Rn), Σ̃1/2 is Lipschitz continuous (see Proposition 6.2 in Ikeda and Watanabe [2014]).

Lemma B.6. Under the same assumptions as Lemma A.5, Σ̃1/2 ∈ G together with its derivatives.

Proof. The thesis follows from the regularity of the entries and the closeness and boundedness of the domain.

Remark B.7. Based on the above results, we have that under mild assumptions on the noise structures (see
Sec. A.1) that cover and generalize the well-accepted Gaussianity, and under the well-accepted closeness and
boundedness of the domain, the SDE of DCSGD admits a unique solution and its coefficients are regular enough
to apply Prop. A.6 and Thm. A.7.

Theorem B.8 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let
xk ∈ Rd, 0 ≤ k ≤ N denote a sequence of DCSGD iterations defined by Eq. equation 5. Consider the
stochastic process Xt defined in Eq. equation 36 and fix some test function g ∈ G and suppose that g and
its partial derivatives up to order 6 belong to G.
Then, under the assumptions of Section A.1, there exists a constant C > 0 independent of η such that for
all k = 0, 1, . . . , N , we have

|Eg (Xkη)− Eg (xk)| ≤ Cη.

That is, the SDE equation 36 is an order 1 weak approximation of the DCSGD iterations equation 5.

6This is a common assumption in the literature Shamir and Srebro [2014], Wang et al. [2017], Zhao et al. [2018], Yu
et al. [2019], Aviv et al. [2021], Ayache et al. [2023], Marfoq et al. [2023], Deng et al. [2024].
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Proof. First, we calculate the expected value of the increments of DCSGD:

E [xk+1 − xk] = E

[
− η

N

N∑
i=1

Cξi (∇fγi(xk))

]
= E

[
− η

N

N∑
i=1

∇fγi(xk)

]
(38)

= − η

N

N∑
i=1

∇f(xk) = −η∇f(xk); (39)

Then, we calculate the covariance matrix of the gradient noise of DCSGD:

Σ̃(xk) = η2Eξγ

(∇f(xk)− 1

N

N∑
i=1

Cξi (∇fγi(xk))

)∇f(xk)−
1

N

N∑
j=1

Cξj
(
∇fγj (xk)

)⊤
 (40)

=
η2

N

1

N

N∑
i,j=1

Eξiξjγiγj

[
(∇f(xk)− Cξi (∇fγi(xk)))

(
∇f(xk)− Cξj

(
∇fγj (xk)

))⊤] (41)

=
η2

N

1

N

N∑
i=1

Eξiγi

[
(∇f(xk)− Cξi (∇fγi(xk))) (∇f(xk)− Cξi (∇fγi(xk)))

⊤
]

(42)

=
η2

N

1

N

N∑
i=1

(
Eξiγi

[
Φξi,γi(xk)Φξi,γi(xk)

⊤]+Σi(xk)
)
, (43)

where Φξi,γi
(x) := Cξi (∇fγi

(x))−∇fγi
(x) and we use independence of Cξi and ∇f(xk)−∇fγi

(xk) for all i ∈ [N ].
Remembering Remark B.7, the thesis follows from Prop. A.6 and Thm. A.7.

Remark B.9. The expression for Σ̃(x) is easily derived for different compressors by leveraging Proposition 21 in
Philippenko and Dieuleveut [2024].

In all the following results, the reader will notice that all the drifts, diffusion terms, and noise assumptions are
selected to guarantee that the SDE we derived for DCSGD is indeed a 1 weak approximation for DCSGD.

Theorem B.10. If f is µ-PL, L-smooth, ω = 1
N

∑N
i=1 ωi, Tr(Σi(x)) < Lσi , Lσ := 1

N

∑N
i=1 Lσi , and ωLσ :=

1
N

∑N
i=1 ωiLσi

E [f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−
(
2µ− ηL2ω

N

)
t
+

(
1− e

−
(
2µ− ηL2ω

N

)
t
) ηL(Lσ+ωLσ)

2N(
2µ− ηL2ω

N

) . (44)

Proof. Using Itô’s Lemma

d(f(Xt)− f(X∗)) = −∇f(Xt)
⊤∇f(Xt)dt+O(Noise) +

η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (45)

≤ −2µ(f(Xt)− f(X∗))dt (46)

+
ηL

2N

(
1

N

N∑
i=1

Eξi,γi
∥(Cξi (∇fγi

(x))−∇f(x))∥22

)
dt+O(Noise). (47)

Let us focus on a single element of the summation:

Eξi,γi
∥(Cξi (∇fγi

(x))−∇f(x))∥22 = Eγi

[
Eξi

[
∥Cξi(∇fγi

(x))−∇fγi
(x)∥2 + ∥∇fγi

(x)−∇f(x)∥2
]
| γi
]

(48)

≤ ωiEγi
∥∇fγi

(x)∥22 + Eγi

[
∥∇fγi

(x)−∇f(x)∥2
]
= ωi∥∇f(x)∥22 + (ωi + 1)Eγi

[
∥∇fγi

(x)−∇f(x)∥2
]

(49)
≤ 2ωiL(f(x)− f(x∗)) + Lσi

(ωi + 1). (50)

Therefore, we have that

d(f(Xt)− f(X∗)) ≤ −2µ(f(Xt)− f(X∗))dt+O(Noise) +
ηL2ω

N
(f(Xt)− f(X∗))dt (51)

+
ηL
(
Lσ + ωLσ

)
2N

dt, (52)

which implies the thesis.
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Remark: We observe that ωLσ gives a tighter bound than ωLσ,max or ωmaxLσ.

Theorem B.11. If f is L-smooth, we use a learning rate scheduler ηt such that ϕit =
∫ t

0
(ηs)

ids, ϕ1t
t→∞→ ∞,

ϕ2
t

ϕ1
t

t→∞→ 0, and ηt > ηLω
2N (ηt)

2, then,

E
[
∥∇f(Xt̃)∥22

]
≤ 1

1− ηLω
2N

ϕ2
t

ϕ1
t

(
f(X∗)− f(X0)

ϕ1t
+
ϕ2t
ϕ1t

ηL

2N

(
Lσ + ωLσ

)) t→∞→ 0, (53)

where t̃, is a random time with distribution ηt̃−
ηLω
2N (ηt̃)

2

ϕ1
t−

ηLω
2N ϕ2

t

.

Proof. Leveraging what we have shown above, we have that

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+O(Noise) (54)

+ (ηt)
2 ηL

2N

(
1

N

N∑
i=1

Eξi,γi
∥(Cξi (∇fγi

(x))−∇f(x))∥22

)
dt. (55)

As before, Eξi,γi
∥(Cξi (∇fγi

(x))−∇f(x))∥22 ≤ ωi∥∇f(x)∥22 + Lσi
(ωi + 1). Therefore, we have that

E
[
∥∇f(Xt)∥22

](
ηt −

ηLω

2N
(ηt)

2

)
dt ≤ −d(f(Xt)− f(X∗)) +

ηL(ηt)
2

2N

(
Lσ + ωLσ

)
dt. (56)

Let us now observe that since
∫ t

0

ηs− ηLω
2N η2

s

ϕ1
t−

ηLω
2N ϕ2

t

ds = 1, the function s 7→ ηs− ηLω
2N η2

s

ϕ1
t−

ηLω
2N ϕ2

t

defines a probability distribution

and let t̃ have that distribution. Then by integrating over time and by the Law of the Unconscious Statistician,
we have that

E
[
∥∇f(Xt̃)∥22

]
=

1

ϕ1t −
ηLω
2N ϕ2t

∫ t

0

∥∇f(Xs)∥22
(
ηs −

ηLω

2N
η2s

)
ds, (57)

meaning that

E
[
∥∇f(Xt̃)∥22

]
≤ 1

ϕ1t −
ηLω
2N ϕ2t

(
f(X∗)− f(X0) + ϕ2t

ηL

2N

(
Lσ + ωLσ

)) t→∞→ 0, (58)

where t̃, is a random time with distribution ηt̃−
ηLω
2N (ηt̃)

2

ϕ1
t−

ηLω
2N ϕ2

t

.

B.1 Scaling Rules: Recovering DSGD

Proposition B.12. Let the batch size be δB, learning rate κη, the compression rates βωi, and αN agents. The
scaling rules to recover the performance of DSGD are complex and many. For practicality and interpretability
purposes, we list here those involving only two hyperparameters at the time:

1. If κ = δ = 1, one needs to ensure that the relation between α and β is

α = 1 + β

(
ωLσ

Lσ

+
ωLσηL

2

2µN

)
. (59)

This gives rise to a trade-off between agents and compression: If there is compression, then one needs to
increase the number of agents, and the stronger the compression, the more is needed. In the absence of
compression, no additional agents are needed.

2. If β = δ = 1, one needs to ensure that the relation between α and κ is

α

κ
= 1 +

ωLσ

Lσ

+
ωLσηL

2

2µN
. (60)

This gives rise to a trade-off between agents and learning rate: If there is compression, one can increase
the learning rate, i.e. κ > 1, and compensate with more agents α > κ > 1. If no compression is in place,
the classic trade-off of DSGD α = κ is recovered.
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3. If β = κ = 1, one needs to ensure that the relation between α and γ is

α =
1 + ωLσ

Lσ

δ
+
ωηL2

2µN
. (61)

This gives rise to a trade-off between agents and batch size: If there is compression, one can increase the
batch size, i.e. δ ≥ 1, and needs fewer agents. If no compression is in place, the classic trade-off of DSGD
αδ = 1 is recovered.

4. If α = δ = 1, one needs to ensure that the relation between β and κ is

κ =
Lσ

Lσ + β
(
ωLσ + ωηL2

2µN

) . (62)

This gives rise to a trade-off between learning rate and compression: More compression, requires a lower
learning rate. No compression implies no change in the learning rate.

5. If α = κ = 1, one needs to ensure that the relation between β and δ is

δ =
2µ
(
Lσ + βωLσ

)
Lσ

(
2µ− β ωηL2

N

) . (63)

This gives rise to a trade-off between batch size and compression: More compression, requires a larger
batch size. No compression implies no change in batch size.

6. If α = β = 1, one needs to ensure that the relation between κ and δ is

κ =
δLσ

Lσ + ωLσ + δ ωηL2

2µN

. (64)

This gives rise to a trade-off between learning rate and batch size: More batch size requires a larger learning
rate. No compression implies the classic κ = δ of DSGD.

We summarize the derived rules in the following table: Of course, in the absence of compression, all scaling rules

Scaling Rule Implication
α = 1 + β ωLσ

Lσ
+ β ωLσηL2

2µN CR ↑ =⇒ Agents ↑
α
κ = 1 + ωLσ

Lσ
+ ωLσηL2

2µN LR ↑ =⇒ Agents ↑

α = 1
δ

(
1 + ωLσ

Lσ

)
+ ωηL2

2µN BS ↓ =⇒ Agents ↑

κ = Lσ

Lσ+β
(
ωLσ+

ωηL2

2µN

) CR ↑ =⇒ LR ↓

δ =
2µ(Lσ+βωLσ)
Lσ

(
2µ−β ωηL2

N

) CR ↑ =⇒ BS ↑

κ = δLσ

Lσ+ωLσ+δ ωηL2

2µN

BS ↑ =⇒ LR ↑

Table 2: Summary of Trade-offs Between Parameters (CR = Compression Rate, LR = Learning Rate,
and BS = Batch Size).

reduce to the scaling rules of DSGD.

Proof. Using Itô on f , we have that

d(f(Xt)− f(X∗)) = −κ∥∇f(Xt)∥22dt+O(Noise) +
ηκ2

2αN
Tr(∇2f(Xt)Σ̃(Xt))dt (65)

≤− 2µκ(f(Xt)− f(X∗))dt+O(Noise) (66)

+
ηκ2L

2αN

1

αN

αN∑
i=1

Eξi,γi
∥(Cξi (∇fγi

(x))−∇f(x))∥22dt. (67)
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As above, Eξi,γi
∥(Cξi (∇fγi

(x))−∇f(x))∥22 ≤ 2βωiL(f(x)− f(x∗)) +
Lσi

δB (βωi + 1). Therefore, we have that

d(f(Xt)− f(X∗)) (68)

≤− 2µκ(f(Xt)− f(X∗))dt+O(Noise) +
ηκ2L2ωβ

αN
(f(Xt)− f(X∗))dt (69)

+
ηκ2LLσ

2BδαN
dt+

βηκ2LωLσ

2BδαN
dt, (70)

which implies that

E [f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−
(
2µ− ηκL2ωβ

αN

)
κt (71)

+

(
1− e

−κ
(
2µ− ηκL2ω

αN

)
t
) ηκLLσ

2BδαN + βηκLωLσ

2BδαN(
2µ− ηκL2ωβ

αN

) . (72)

Now, we need to find functional relationships between α, δ, κ, and β such that the asymptotic value of the
loss of DCSGD with hyperparameters (κη, δB, βωi, αN) matches the asymptotic loss value of DSGD with
hyperparameters (η,B,N):

ηκLLσ

2BδαN + βηκLωLσ

2BδαN(
2µ− ηκL2ωβ

αN

) =
ηLLσ

4µNB
. (73)

Since a general formula involving all four quantities is difficult to interpret, we derive six rules: For each of them,
we keep two scaling parameters constant to 1 and study the relationship between the remaining two.

Let us prove one to show the mechanism as they are all derived in a few passages. We focus on the first one, for
which we set κ = δ = 1 and study the relationship between α and β. To do this, we solve

ηLLσ

2BαN + βηLωLσ

2BαN(
2µ− ηL2ωβ

αN

) =
ηLLσ

4µNB
=⇒

Lσ+βωLσ

α(
2µ− ηL2ωβ

αN

) =
Lσ

2µ
(74)

=⇒ 1

α
2µ
(
Lσ + βωLσ

)
= Lσ

(
2µ− 1

α

ηL2ωβ

N

)
, (75)

which implies the thesis. All the other rules are derived similarly.

B.2 Stationary Distribution

Let us focus on a quadratic function f(x) = x⊤Hx
2 such that H = diag(λ1, · · · , λd) where each λj > 0.

Proposition B.13. Let us consider the k-Sparsification compressor. Then,

E[Xt] = e−HtX0 → 0, (76)

and, for M := 2H
(
Id − ηH

2N

(
d
k − 1

))
,

Cov [Xt] = e−MtX2
0 +

η

N

d

k
σ2M−1(Id − e−Mt)− e−2HtX2

0 → η

N

d

k
σ2M−1. (77)

Proof. It is clear that
dE[Xt] = −HE[Xt]dt, (78)

which implies that
E[Xt] = e−HtX0 → 0. (79)

Let us now focus on the dynamics of the square of the j-th coordinate (Xt)j of Xt which, for ease of notation,
we call Zt. Since we need to apply Itô’s Lemma on ((Xt)j)

2, we need to observe that since this is the square of
j-th component of Xt, it can be rewritten as the square of the projection of Xt on the j-th coordinate as πj(Xt).
Therefore, we have that by Itô’s Lemma:
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d((πj(Xt))
2) = ∂t((πj(Xt))

2)dt+ ⟨∇((πj(Xt))
2),∇f(Xt)⟩dt (80)

+
1

2
Tr
( η
N

Σ̃(Xt)∇2((πj(Xt))
2)
)
dt+ ⟨∇(πj(Xt))

2, σt⟩dWt (81)

= −(HXt)
⊤∇((πj(Xt))

2)dt+O(Noise) +
η

2N
Tr
(
∇2((πj(Xt))

2)Σ̃(Xt)
)
dt. (82)

Since ∇((πj(Xt))
2) = (0, · · · , 0, 2(Xt)j , 0, · · · , 0) and ∇2((πj(Xt))

2) = diag (0, · · · , 0, 2, 0, · · · , 0), we have that

d
(
((Xt)j)

2
)
= d

(
(πj(Xt))

2
)
= −(HXt)

⊤∇((πj(Xt))
2)dt+O(Noise) (83)

+
η

2N
Tr
(
∇2((πj(Xt))

2)Σ̃(Xt)
)
dt, (84)

meaning that
d(Z2

t ) = −2hjZ
2
t dt+O(Noise) +

η

N
Σ̃jj(Xt)dt. (85)

Since we have that

Σ̃(x) =
1

N

N∑
i=1

Eξiγi

[
(Cξi (∇fγi

(x))−∇f(x)) (Cξi (∇fγi
(x))−∇f(x))⊤

]
(86)

=
1

N

N∑
i=1

Eξiγi

[
Cξi (∇fγi

(x)) Cξi (∇fγi
(x))

⊤
]
−∇f(x)∇f(x)⊤ (87)

=
1

N

N∑
i=1

(
d

k
∇f(x)∇f(x)⊤ +

d

k
(Σi(Xt))

)
−∇f(x)∇f(x)⊤ (88)

=

(
d

k
− 1

)
∇f(x)∇f(x)⊤ +

d

k
Σ2, (89)

where Σ2 := 1
N

∑N
i=1(Σi(Xt)). Therefore, we have that

E
[
(Xt)

2
]
= e−MtX2

0 +
η

N

d

k
σ2M−1(Id − e−Mt) (90)

where σ2 := diag(Σ2). The thesis follows from here.

C Distributed SignSGD
This subsection provides the first formal derivation of an SDE model for DSignSGD. Note that the single node
case was simultaneously tackled by Compagnoni et al. [2025] and Xiao et al. [2024]: The first derived the SDE for
SignSGD under the WA framework, while Xiao et al. [2024] derived an SDE for SignSGD in the high dimensional
setting for a linear regression task — See Appendix F in Xiao et al. [2024] for a comparison between the two
derivations. Let us consider the stochastic process Xt ∈ Rd defined as the solution of

dXt = − 1

N

N∑
i=1

(1− 2P(∇fγi
(Xt) < 0)) dt+

√
η

N

√
Σ(Xt)dWt. (91)

where

Σ(Xt) :=
1

N

N∑
i=1

Σi(Xt), (92)

and Σi(x) = E[ξγi
(x)ξγi

(x)⊤] where ξγi
(x) := sign(∇fγi

(x)) − 1 + 2P(∇fγi
(x) < 0) the noise in the sample

sign (∇fγi
(x)).

Before proceeding, we ensure that the SDE admits a unique solution and that its coefficients are sufficiently
regular.

Lemma C.1. The drift term b(x) := 1
N

∑N
i=1 (1− 2P(∇fγi

(x) < 0)) is Lipschitz, satisfies affine growth, and
belongs to the space G together with its derivatives.
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Proof. Since we are assuming that the gradient noise has a smooth and bounded probability density function,7
the drift can be rewritten in terms of the CDF FZi

(x) of the noise as the average of bi(x) := 1− 2FZi
(−∇f(x)),

whose derivative is 2F
′

Zi
(−∇f(x))∇2f(x). Since the density functions and the Hessian of f are bounded, we

conclude that the derivative is bounded. Therefore, the drift is Lipschitz and as regular as ∇f , meaning that
each entry is in G, together with its derivatives. Finally, since it is bounded, it has affine growth.

Lemma C.2. The diffusion coefficient
√
Σ satisfies the affine growth condition.

Proof. Since it is bounded, the result follows immediately.

Lemma C.3. Let us assume the same assumptions as Lemma A.4. Additionally, assume that

sup
x∈K

|g(x, ·)| ∈ L1(Rn)

for all compact sets K. Then the entries of Σ in Eq. 92 are in C7
b (Rn).

Proof. By the definition of Σ in terms of the sign-function and dominated convergence, from the additional
assumption on g, it follows that Σ is continuous. So Lemma A.4 entails that the entries of Σ are in C7

b (Rn).

Lemma C.4. Under the assumption that
g(x, y) > 0, (93)

the covariance matrix Σ is positive definite.

Proof. Let us focus on the case N = 1 as the generalization is straightforward. For y = (y1, . . . , yn)
T , observe

that (
Σ(x)y, y

)
=

n∑
i,j=1

yiE
[
ξiγ(x)ξ

j
γ(x)

]
yj = E

( n∑
i=1

ξiγ(x)yi

)2
 .

Using the definition of ξγ and the positivity of the density g, we can argue by contradiction and see that for
y ̸= 0, the right-hand side of the equation must be strictly greater than zero for all x. Therefore, Σ(x) ∈ S for all
x, where S denotes the open set of positive definite matrices in the space of symmetric n× n matrices.

Corollary C.5. Since Σ is positive definite and its entries are in C7
b (Rn),

√
Σ is Lipschitz.

Proof. The function
φ : S → S, A 7→

√
A

has Fréchet derivatives of any order on S (see e.g. Del Moral and Niclas [2018]). Therefore, Σ
1/2 ∈ C7(Rn), and

since Σ ∈ C7
b (Rn), Σ

1/2
is Lipschitz continuous (see Proposition 6.2 in Ikeda and Watanabe [2014]).

Proposition C.6. Assume the conditions of Lemma A.5 and assume that the functions lm(x) for m = 1, . . . , 7

in Eq. (16) are of polynomial growth. Then Σ
1/2 ∈ G together with its derivatives.

Corollary C.7. If the noise Z(x) ∼ N (0,Σ) or Z(x) ∼ tν(0,Σ), then Σ
1/2 ∈ G together with its derivatives.

Proof. With the definition of Ξν(x) given in Corollary C.10, the function K(x) :=
√
1− 4Ξν(x)2 is in G together

with its derivative: It is easy to verify that all the derivatives of K(x) are bounded even in the case ν = 1,
which is the most pathological one. Therefore, in the case N = 1,

√
Σ(x) is in G together with its derivatives.

Generalizing to N > 1 follows the same steps.

Remark C.8. Based on the above results, we have that under mild assumptions on the noise structures (see
Sec. A.1) that cover and generalize the well-accepted Gaussianity, e.g. covering Student’s t as well, the SDE of
DSignSGD admits a unique solution and its coefficients are regular enough to apply Prop. A.6 and Thm. A.7.

7This is commonly assumed in the literature. Among others, Ahn et al. [2012], Chen et al. [2014], Mandt et al. [2016],
Stephan et al. [2017], Zhu et al. [2019], Wu et al. [2020], Xie et al. [2021] assume that it is Gaussian, while Jastrzebski
et al. [2018] offers an intuitive justification.
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Theorem C.9 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let
xk ∈ Rd, 0 ≤ k ≤ N denote a sequence of DSignSGD iterations defined by Eq. equation 10. Consider the
stochastic process Xt defined in Eq. equation 91 and fix some test function g ∈ G and suppose that g and
its partial derivatives up to order 6 belong to G.
Then, under the assumptions of Section A.1, there exists a constant C > 0 independent of η such that for
all k = 0, 1, . . . , N , we have

|Eg (Xkη)− Eg (xk)| ≤ Cη.

That is, the SDE equation 91 is an order 1 weak approximation of the DSignSGD iterations equation 10.

Proof. First, we calculate the expected value of the increments of DSignSGD:

E [xk+1 − xk] = E

[
− η

N

N∑
i=1

sign(∇fγi(xk))

]
= − η

N

N∑
i=1

(1− 2P(∇fγi(xk) < 0)) ; (94)

Then, we calculate the covariance matrix of the gradient noise of DSignSGD:

Σ(xk) = η2Eγ

[(
1

N

N∑
i=1

sign(∇fγi
(xk)−

1

N

N∑
i=1

(1− 2P(∇fγi
(xk) < 0))

)
(95)

(
1

N

N∑
i=1

sign(∇fγi
(xk)−

1

N

N∑
i=1

(1− 2P(∇fγi
(xk) < 0))

)⊤ (96)

=
η2

N

1

N

N∑
i,j=1

Eγiγj [(sign(∇fi(xk))− 1 + 2P(∇fγi(xk) < 0)) (97)

(
sign(∇fj(xk))− 1 + 2P(∇fγj (xk) < 0)

)⊤] (98)

=
η2

N

1

N

N∑
i=1

Eγi [(sign(∇fi(xk))− 1 + 2P(∇fγi(xk) < 0)) (99)

(sign(∇fi(xk))− 1 + 2P(∇fγi(xk) < 0))
⊤
]

(100)

=
η2

N

1

N

N∑
i=1

Σi(xk). (101)

where we use independence of γi for all i ∈ [N ]. Remembering Remark C.8, the thesis follows from Prop. A.6
and Thm. A.7.

In all the following results, the reader will notice that all the drifts, diffusion terms, and noise assumptions
are selected to guarantee that the SDE we derived for DSignSGD is indeed a 1 weak approximation for
DSignSGD.

Corollary C.10. Let us take the same assumptions of Theorem C.9, and that the stochastic gradients are
∇fγi

(x) = ∇f(x) +
√
ΣiZi such that Zi ∼ tν(0, Id) does not depend on x, ν are the degrees of freedom, and scale

matrices Σi = diag(σ2
1,i, · · · , σ2

d,i). Then, the SDE of DSignSGD is

dXt = − 2

N

N∑
i=1

Ξν

(
Σ

− 1
2

i ∇f(Xt)
)
dt+

√
η

N

√
Σ̃(Xt)dWt. (102)

where Ξν(x) is defined as Ξν(x) := x
Γ( ν+1

2 )
√
πνΓ( ν

2 )
2F1

(
1
2 ,

ν+1
2 ; 3

2 ;−
x2

ν

)
, 2F1 (a, b; c;x) is the hypergeometric function,

and

Σ̃(Xt) := Id −
4

N

N∑
i=1

(
Ξν

(
Σ

− 1
2

i ∇f(Xt)
))2

. (103)

Proof. First of all, we observe that

1− 2P (∇fγi
(x) < 0) = 1− 2P

(
∇f(x) + Σ

1
2
i Ui < 0

)
= 1− 2Fν

(
−Σ

− 1
2

i ∇f(x)
)
, (104)
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where Fν (x) is the cumulative function of a t distribution with ν degrees of freedom. Remembering that

Fν (x) =
1

2
+ Ξν(x), (105)

we have that
1− 2P (∇fγi

(x) < 0) = 1− 2

(
1

2
+ Ξν(−Σ

− 1
2

i ∇f(x))
)

= 2Ξν(Σ
− 1

2
i ∇f(x)). (106)

Similarly, one can prove that Σi becomes

Σ̄i = Id − 4 diag
(
Ξν

(
Σ

− 1
2

i ∇f(Xt)
))2

. (107)

Proposition C.11. Under the assumptions of Corollary C.10 and signal-to-noise ratios Y i
t := Σ

− 1
2

i ∇f(Xt), let
ψν ∈ R such that |x| > ψν =⇒ 2|Ξν(x)| ∼ 1. Then, the DSignSGD has three phases:

1. Phase 1: If
∣∣Y i

t

∣∣ > ψν , the SDE coincides with the ODE of SignGD:

dXt = − sign(∇f(Xt))dt; (108)

2. Phase 2: If 1 <
∣∣Y i

t

∣∣ < ψν :8

(a) −mν

(
1
N

∑N
i=1 Σ

− 1
2

i

)
∇f(Xt)− q+

ν ≤ dE[Xt]
dt ≤ −mν

(
1
N

∑N
i=1 Σ

− 1
2

i

)
∇f(Xt)− q−

ν ;

(b) P
[
∥Xt − E [Xt]∥22 > a

]
≤ η

a

(
d− 1

N

∑N
i=1∥mνY

i
t + q−

ν ∥22
)
;

3. Phase 3: If
∣∣Y i

t

∣∣ < 1 and ℓν := 2Ξ
′

ν(0), the SDE is

dXt = −ℓν

(
1

N

N∑
i=1

Σ
− 1

2
i

)
∇f(Xt)dt+

√
η

N

√√√√Id −
ℓ2ν
N

N∑
i=1

diag
(
Σ

− 1
2

i ∇f(Xt)
)2
dWt. (109)

Proof. Exploiting the regularity of the Ξν(x) function, we approximate the SDE in equation 102 in three different
regions:

1. Phase 1: If |x| > ψν , 2Ξν(x) ∼ sign(x). Therefore, if
∣∣∣Σ− 1

2
i ∇f(Xt)

∣∣∣ > ψν ,

(a) 2Ξν

(
Σ

− 1
2

i ∇f(Xt)
)
∼ sign

(
Σ

− 1
2

i ∇f(Xt)
)
= sign (∇f(Xt));

(b) 4Ξν

(
Σ

− 1
2

i ∇f(Xt)
)2

∼ sign
(
Σ

− 1
2

i ∇f(Xt)
)2

= (1, . . . , 1).

Therefore,

dXt ∼ − sign(∇f(Xt))dt; (110)

2. Phase 2: If 1 < x < ψν , we have that

mνx+ qν,1 < 2Ξν(x) < mνx+ qν,2. (111)

Analogously, if −ψν < x < −1

mνx− qν,2 < 2Ξν(x) < mνx− qν,1. (112)

Therefore, we have that if 1 <
∣∣Y i

t

∣∣ < ψν , then

8Let mν and qν,1 are the slope and intercept of the line secant to the graph of 2Ξν(x) between the points (1, 2Ξν(1))
and (ψν , 2Ξν (ψν)), while qν,2 is the intercept of the line tangent to the graph of 2Ξν(x) and slope mν , (q+

ν )i :={
qν,2 if ∂if(x) > 0

−qν,1 if ∂if(x) < 0
, (q−)i :=

{
qν,1 if ∂if(x) > 0

−qν,2 if ∂if(x) < 0
, and q̂ν := max(qν,1, qν,2).
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(a)
mνΣ

− 1
2

i ∇f(Xt) + q−
ν < 2Ξν

(
Σ

− 1
2

i ∇f(Xt)
)
< mνΣ

− 1
2

i ∇f(Xt) + q+
ν . (113)

Therefore,

−mν

(
1

N

N∑
i=1

Σ
− 1

2
i

)
∇f(Xt)− q+

ν ≤ dE [Xt]

dt
≤ −mν

(
1

N

N∑
i=1

Σ
− 1

2
i

)
∇f(Xt) + q−

ν ; (114)

(b) Similar to the above,(
mνΣ

− 1
2

i ∇f(Xt) + q−
ν

)2
≤ 4Ξν

(
Σ

− 1
2

i ∇f(Xt)
)2

≤
(
mνΣ

− 1
2

i ∇f(Xt) + q+
ν

)2
.

Therefore,

P
[
∥Xt − E [Xt]∥22 > a

]
≤ P

[
∃j s.t. |Xj

t − E
[
Xj

t

]
|2 > a

]
(115)

≤
∑
j

P
[
|Xj

t − E
[
Xj

t

]
| >

√
a
]

≤ η

a

∑
j

(
1− 4

N

N∑
i=1

Ξν

(
(Σi)

− 1
2

j ∂jf(Xt)
)2)

(116)

<
η

a

(
d− 1

N

N∑
i=1

∥mνΣ
− 1

2
i ∇f(Xt) + q−

ν ∥22

)
. (117)

3. Phase 3: If |x| < 1, 2Ξν(x) ∼ ℓνx for ℓν := 2Ξ
′

ν(0). Therefore, if
∣∣∣Σ− 1

2
i ∇f(Xt)

∣∣∣ < 1,

(a) 2Ξν

(
Σ

− 1
2

i ∇f(Xt)
)
∼ ℓνΣ

− 1
2

i ∇f(Xt);

(b) 4
(
Ξν

(
Σ

− 1
2

i ∇f(Xt)
))2

∼ ℓ2ν

(
Σ

− 1
2

i ∇f(Xt)
)2

.

Therefore,

dXt = −ℓν

(
1

N

N∑
i=1

Σ
− 1

2
i

)
∇f(Xt)dt+

√
η

N

√√√√Id −
ℓ2ν
N

N∑
i=1

diag
(
Σ

− 1
2

i ∇f(Xt)
)2
dWt. (118)

Theorem C.12. Let f be µ-strongly convex, Tr(∇2f(x)) < Lτ , Σi ≤ σ2
max,i, St := f(Xt)− f(X∗), and σH,j be

the harmonic mean of {(σmax,i)
j}. Then, if all agents are in

1. Phase 1, the loss will reach 0 before t∗ = 2
√

S0

µ because St ≤ 1
4

(√
µt− 2

√
S0

)2;
2. Phase 2, E[St] ≤ S0e

−2µ∆t + η(Lτ−µdq̂2)
2N

1
2µ∆

(
1− e−2µ∆t

)
with ∆ := mνσ

−1
H,1 +

ηµm2
ν

2N σ−1
H,2;

3. Phase 3, E[St] ≤ S0e
−2µ∆t + ηLτ

2N
1

2µ∆

(
1− e−2µ∆t

)
with ∆ := ℓνσ

−1
H,1 +

ηµℓ2ν
2N σ−1

H,2.

Proof. Let us prove the above phase by phase:

For Phase 1,

d(f(Xt)− f(X∗)) = −∇f(Xt) sign(∇f(Xt))dt = −∥∇f(Xt)∥1dt ≤ −∥∇f(Xt)∥2dt. (119)

Since f is µ-PL, we have that −∥∇f(Xt)∥22 < −2µ(f(Xt)− f(X∗)), which implies that

f(Xt)− f(X∗) ≤
1

4

(√
µt− 2

√
f(X0)− f(X∗)

)2
, (120)

meaning that the dynamics will stop before t∗ = 2
√

f(X0)−f(X∗)
µ ;
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For Phase 2, using Itô on f , we have that

d(f(Xt)− f(X∗)) = −mν

N

N∑
i=1

∇f(Xt)
⊤Σ

− 1
2

i ∇f(Xt)dt−∇f(Xt)
⊤q−

ν dt+
ηLτ

2N
dt (121)

+O(Noise)− ηµ

2N

1

N

N∑
i=1

∥mνΣ
− 1

2
i ∇f(Xt) + qν∥22dt (122)

≤ −mνσ
−1
H,1∥∇f(Xt)∥22dt− q̂∥∇f(Xt)∥1dt+

ηLτ

2N
dt (123)

+O(Noise)− ηµdq̂2

2N
dt− ηm2

νµ

2N
σ−1
H,2∥∇f(Xt)∥22dt−

ηµmνσ
−1
H,1q̂

N
∥∇f(Xt)∥1dt (124)

≤ −
(
mνσ

−1
H,1 +

ηµm2
ν

2N
σ−1
H,2

)
∥∇f(Xt)∥22dt+

η(Lτ − µdq̂2)

2N
dt+O(Noise) (125)

≤ −2µ

(
mνσ

−1
H,1 +

ηµm2
ν

2N
σ−1
H,2

)
(f(Xt)− f(X∗))dt+

η(Lτ − µdq̂2)

2N
dt+O(Noise) (126)

meaning that

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µ∆t +

η(Lτ − µdq̂2)

2N

1

2µ∆

(
1− e−2µ∆t

)
(127)

with ∆ := mνσ
−1
H,1 +

ηµm2
ν

2N σ−1
H,2, σH,j is the harmonic mean of {(σmax,i)

j}.

For Phase 3, using Itô on f , we have that

d(f(Xt)− f(X∗)) = −ℓν
N

N∑
i=1

∇f(Xt)
⊤Σ

− 1
2

i ∇f(Xt)dt+
ηLτ

2N
dt (128)

+O(Noise)− η

2N

ℓ2ν
N

N∑
i=1

∥∇2f(Xt)Σ
− 1

2
i ∇f(Xt)∥22dt (129)

≤ −ℓν

(
1

N

N∑
i=1

1

σmax,i

)
∥∇f(Xt)∥22dt+

ηLτ

2N
dt (130)

+O(Noise)− ηµℓ2ν
2N

(
1

N

N∑
i=1

1

σ2
max,i

)
∥∇f(Xt)∥22dt (131)

= −ℓνσ−1
H,1∥∇f(Xt)∥22dt+

ηLτ

2N
dt+O(Noise)− ηµℓ2ν

2N
σ−1
H,2∥∇f(Xt)∥22dt (132)

≤ −
(
ℓνσ

−1
H,1 +

ηµℓ2ν
2N

σ−1
H,2

)
∥∇f(Xt)∥22dt+

ηLτ

2N
dt+O(Noise) (133)

≤ −2µ

(
ℓνσ

−1
H,1 +

ηµℓ2ν
2N

σ−1
H,2

)
(f(Xt)− f(X∗))dt+

ηLτ

2N
dt+O(Noise) (134)

meaning that

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µ∆t +

ηLτ

2N

1

2µ∆

(
1− e−2µ∆t

)
(135)

with ∆ := ℓνσ
−1
H,1 +

ηµℓ2ν
2N σ−1

H,2, σH,j is the harmonic mean of {(σmax,i)
j}, and ℓν := 2Ξ

′

ν(0).

Remark: If not all the agents are in the same Phase, we can upper bound the dynamics of dft with the case
where they are all in the third Phase, which is that of weakest descent.

Theorem C.13. Let f be µ-PL, L-Smooth, Σi ≤ σ2
max,i, St := f(Xt)− f(X∗), and σH,j be the harmonic mean

of {(σmax,i)
j}. Then, if all agents are in

1. Phase 1, the loss will reach 0 before t∗ = 2
√

S0

µ because St ≤ 1
4

(√
µt− 2

√
S0

)2;
2. Phase 2, E[St] ≤ S0e

−2µ∆t + ηLd
4µ∆N

(
1− e−2µ∆t

)
with ∆ := mνσ

−1
H,1;

3. Phase 3, E[St] ≤ S0e
−2µ∆t + ηLd

4µ∆N

(
1− e−2µ∆t

)
with ∆ := ℓνσ

−1
H,1;
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Proof. Let us prove the above phase by phase:

For Phase 1,

d(f(Xt)− f(X∗)) = −∇f(Xt) sign(∇f(Xt))dt = −∥∇f(Xt)∥1dt ≤ −∥∇f(Xt)∥2dt. (136)

Since f is µ-PL, we have that −∥∇f(Xt)∥22 < −2µ(f(Xt)− f(X∗)), which implies that

f(Xt)− f(X∗) ≤
1

4

(√
µt− 2

√
f(X0)− f(X∗)

)2
, (137)

meaning that the dynamics will stop before t∗ = 2
√

f(X0)−f(X∗)
µ ;

For Phase 2, using Itô on f , we have that

d(f(Xt)− f(X∗)) = −mν

N

N∑
i=1

∇f(Xt)
⊤Σ

− 1
2

i ∇f(Xt)dt−∇f(Xt)
⊤q−

ν dt+
ηLd

2N
dt (138)

≤ −2µmνσ
−1
H,1(f(Xt)− f(X∗))dt+

ηLd

2N
dt+O(Noise) (139)

which implies the thesis.

For Phase 3, using Itô on f , we have that

d(f(Xt)− f(X∗)) = −ℓν
N

N∑
i=1

∇f(Xt)
⊤Σ

− 1
2

i ∇f(Xt)dt−∇f(Xt)
⊤q−

ν dt+
ηLd

2N
dt (140)

≤ −2µℓνσ
−1
H,1(f(Xt)− f(X∗))dt+

ηLd

2N
dt+O(Noise) (141)

which implies the thesis.

Theorem C.14. If f is L-smooth, we use a learning rate scheduler ηt such that ϕit =
∫ t

0
(ηs)

ids, ϕ1t
t→∞→ ∞,

ϕ2
t

ϕ1
t

t→∞→ 0, and Σi ≤ σ2
max,i.

1. In Phase 1, ∥∇f (Xt̃1)∥1 ≤ f(X0)−f(X∗)
ϕ1
t

t→∞→ 0;

2. In Phase 2,

mνE∥∇f (Xt̃(1,2))∥22 + q̂σH,1E∥∇f (Xt̃(2,2))∥1 ≤ σH,1

ϕ1t

(
f(X0)− f(X∗) +

ηLdϕ2t
2N

)
t→∞→ 0; (142)

3. In Phase 3,

ℓνE∥∇f (Xt̃3)∥22 ≤ σH,1

ϕ1t

(
f(X0)− f(X∗) +

ηLdϕ2t
2N

)
t→∞→ 0. (143)

Above, t̃1, t̃(1,2), t̃(2,2), and t̃3 are random times with distribution ηt

ϕ1
t
.

Proof. Let us prove the above phase by phase:

For Phase 1,

d(f(Xt)− f(X∗)) = −ηt∇f(Xt) sign(∇f(Xt))dt = −ηt∥∇f(Xt)∥1dt (144)

= −ϕ1t
ηt∥∇f(Xt)∥1

ϕ1t
dt (145)

Therefore, by integrating over time and using the law of the unconscious statistician

∥∇f (Xt̃1)∥1 ≤ f(X0)− f(X∗)

ϕ1t

t→∞→ 0; (146)

where t̃1 is a random time with distribution ηt

ϕ1
t
;
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For Phase 2, using Itô on f , we have that

d(f(Xt)− f(X∗)) ≤ −ηtmνσ
−1
H,1∥∇f(Xt)∥22dt− ηtq̂∥∇f(Xt)∥1dt+ η2t

ηLd

2N
dt+O(Noise) (147)

Therefore, by integrating over time and using the law of the unconscious statistician we have

mνE∥∇f (Xt̃(1,2))∥22 + q̂σH,1E∥∇f (Xt̃(2,2))∥1 ≤ σH,1

ϕ1t

(
f(X0)− f(X∗) +

ηLdϕ2t
2N

)
t→∞→ 0, (148)

where t̃(1,2), t̃(2,2), and t̃3 are random times with distribution ηt

ϕ1
t
;

For Phase 3, using Itô on f , we have that

d(f(Xt)− f(X∗)) ≤ −ηtℓνσ−1
H,1∥∇f(Xt)∥22dt+ η2t

ηLd

2N
dt+O(Noise) (149)

Therefore, by integrating over time and using the law of the unconscious statistician we have

ℓνE∥∇f (Xt̃3)∥22 ≤ σH,1

ϕ1t

(
f(X0)− f(X∗) +

ηLdϕ2t
2N

)
t→∞→ 0, (150)

where t̃3 is a random time with distribution ηt

ϕ1
t
.

C.1 Scaling Rules

Proposition C.15. Let the batch size be δB, learning rate κη, and αN agents. Let K1 := ℓν
√
Bσ−1

H,1 and

K2 :=
ηℓ2νBµσ−1

H,2

2N . The scaling rules (involving only two parameters at the time) to preserve the performance
independently of δ, κ, and α, are: Finally, we observe that if K1

K2
∼ 0, for example when N ≫ 1, then these rules

Scaling Rule Implication

α = 1√
δ
+ K2

K1

(
1√
δ
−
√
δ
)

BS ↓ =⇒ Agents ↑
α = κ LR ↑ =⇒ Agents ↑

κ =
√
δ

1+
K1
K2

(1−δ)
BS ↑ =⇒ Agents ↑

Table 3: Summary of Trade-offs Between Parameters (LR = Learning Rate and BS = Batch Size).

can be summarized as κ
α
√
δ
= 1, which recover the Scaling Rules of Adam and RMSprop as well as allow for the

enhanced design flexibility of the distributed setting.

Proof. Let us focus on Phase 3, which is when the dynamics reaches stability. Using Itô’s Lemma on f we have
that

d(f(Xt)− f(X∗)) = − κ

αN

αN∑
i=1

ℓν
√
δB∇f(Xt)

⊤Σ
− 1

2
i ∇f(Xt)dt+

ηκ2Lτ

2αN
dt (151)

+O(Noise)− ηκ2

2αN

ℓ2νBδ

αN

αN∑
i=1

∥∇2f(Xt)Σ
− 1

2
i ∇f(Xt)∥22dt (152)

≤ −(2µκℓν
√
δB)

(
1

αN

αN∑
i=1

1

σmax,i

)
(f(Xt)− f(X∗))dt+

ηκ2Lτ

2αN
dt (153)

+O(Noise)− 2µ2ηκ2

2αN
ℓ2νBδ

(
1

αN

αN∑
i=1

1

σ2
max,i

)
(f(Xt)− f(X∗))dt, (154)

meaning that

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µ∆t +

ηκ2

2αN

Lτ

2µ∆

(
1− e−2µ∆t

)
(155)

with ∆ :=
(
ℓνκ

√
δBσ−1

H,1 +
ηκ2

2αN ℓ
2
νδBµσ

−1
H,2

)
.

The asymptotic limit is thus:
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ηLτ

4µN

κ

α
√
δ

1

ℓν
√
Bσ−1

H,1 +
ηℓ2νBµσ−1

H,2

2N
κ
√
δ

α

. (156)

To maintain the performance of DSignSGD independently of α, κ, and δ, we need to solve the following equation:

ηLτ

4µN

κ

α
√
δ

1

ℓν
√
Bσ−1

H,1 +
ηℓ2νBµσ−1

H,2

2N
κ
√
δ

α

=
ηLτ

4µN

1

ℓν
√
Bσ−1

H,1 +
ηℓ2νBµσ−1

H,2

2N

. (157)

To provide easily interpretable and actionable scaling rules, we fix one of the three parameters to 1 and find the
relationship between the others. With simple math, the thesis follows.

C.2 Stationary Distribution

Proposition C.16. Let H = diag(λ1, . . . , λd), Mt := e−2(ℓνΣH,1H+ η
2N ℓ2νΣH,2H

2)t where ΣH,1 = 1
N

∑N
i=1 Σ

− 1
2

i ,
and ΣH,2 = 1

N

∑N
i=1 Σ

−1
i . Then,

1. E [Xt] = e−ℓνΣH,1HtX0
t→∞→ 0;

2. Cov [Xt] =
(
Mt − e−2ℓνΣH,1Ht

)
X2

0 + η
2N

(
ℓνId +

η
2N ℓ

2
νΣH,2Σ

−1
H,1H

)−1

H−1Σ−1
H,1 (Id −Mt) ,

which as t→ ∞ converges to η
2N

(
ℓνId +

η
2N ℓ

2
νΣH,2Σ

−1
H,1H

)−1

H−1Σ−1
H,1.

Proof. The proof mimics that of Prop. B.13.

D Additional Related Works
In this section, we list some papers that derived or used SDEs to model optimizers. In particular, we focus on
the aspect of empirically verifying the validity of such SDEs in the sense that they indeed track the respective
optimizers. We divide these into three categories: Those that did not carry out any type of validation, those
that did it on simple landscapes (quadratic functions et similia), and those that did small experiments on neural
networks.

None of the following papers carried out any experimental validation of the approximating power of the SDEs
they derived. Many of them did not even validate the insights derived from the SDEs: [Liu et al., 2021, Hu
et al., 2019, Bercher et al., 2020, Zhu and Ying, 2021, Cui et al., 2020, Maulén Soto, 2021, Wang and Wu, 2020,
Lanconelli and Lauria, 2022, Ayadi and Turinici, 2021, Soto et al., 2022, Li and Wang, 2022, Wang and Mao,
2022, Bardi and Kouhkouh, 2022, Chen et al., 2022, Kunin et al., 2023, Zhang et al., 2023, Sun et al., 2023, Li
et al., 2023, Gess et al., 2024, Dambrine et al., 2024, Maulen-Soto et al., 2024].

The following ones carried out validation experiments on artificial landscapes, e.g. quadratic or quartic function,
or easy regression tasks: [Li et al., 2017, 2019, Zhou et al., 2020, An et al., 2020, Fontaine et al., 2021, Gu et al.,
2021, Su and Lau, 2023, Ankirchner and Perko, 2024].

The following papers carried out some experiments which include neural networks: [Paquette et al., 2021,
Compagnoni et al., 2023]. In particular, they both simulate the SDEs with a numerical integrator and compare
them with the respective optimizers: The first validates the SDE on a shallow MLP while the second does so on
a shallow and a deep MLP. We also verify our SDEs on simple landscapes as well as on an MPL (on Breast
Cancer) and, importantly, we verify our insights on ViTs (on MNIST) and ResNets (on CIFAR-10).

It would be great to extend the theoretical results to a more practical class of structural non-convex problems,
e.g., under quasar convexity [Hardt et al., 2018], α-β-condition [Islamov et al., 2024a], or Aiming condition [Liu
et al., 2024].

E Numerical Integration of SDEs
In this section, we only define the Euler-Maruyama Integration Method for SDEs: For a deeper introduction to
SDEs and Itô Calculus, we refer the reader to Appendix B in Compagnoni et al. [2025]. Let us consider an SDE
of the form

dXt = b(Xt, t)dt+ σ(Xt, t)dWt.
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The simplest algorithm to provide a sample path (x̂k)k≥0 for Xt, so that Xk∆t ≊ x̂k for some small ∆t and for
all k∆t ≤ M is called Euler-Maruyama (Algorithm 1). For more details on this integration method and its
approximation properties, the reader can check Mao [2007].

Algorithm 1 Euler-Maruyama Integration Method for SDEs
input The drift b, the volatility σ, and the initial condition x0.

Fix a stepsize ∆t;
Initialize x̂0 = x0;
k = 0;
while k ≤

⌊
T
∆t

⌋
do

Sample some d-dimensional Gaussian noise Zk ∼ N (0, Id);
Compute x̂k+1 = x̂k +∆t b(x̂k, k∆t) +

√
∆t σ(x̂k, k∆t)Zk;

k = k + 1;
end while

output The approximated sample path (x̂k)0≤k≤⌊ T
∆t⌋.

F Experiments
In this section, we provide the modeling choices and instructions to replicate our experiments.

The code is implemented in Python 3 [Van Rossum and Drake, 2009] mainly using Numpy [Harris et al., 2020],
scikit-learn [Pedregosa et al., 2011], and JAX [Bradbury et al., 2018].

F.1 SDE Validation (Figure 1)
In this subsection, we describe the experiments we run to produce Figure 1: The trajectories of the SDEs match
those of the respective algorithms on average. Additionally, the SDEs and the algorithms move at the same
speed.

DSGD - Rosenbrock This paragraph refers to the upper-left of Figure 1. The loss function is the Rosenbrock
function with parameters a = 1 and b = 100. We run DSGD for 10000 epochs as we calculate the full gradient
and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 100. The learning rate is η = 0.001 and N = 10.
Similarly, we integrate the DSGD SDE (Thm. 3.2) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results
are averaged over 5000. We plot the averaged trajectories and observe that they overlap to a great degree of
agreement.

DCSGD - Embedded Saddle This paragraph refers to the upper-right of Figure 1. We optimize the
function f(x) = x⊤Hx

2 + 1
4λ
∑2

i=1 x
4
i −

ξ
3

∑2
i=1 x

3
i where H = diag(1,−2), λ = 1, and ξ = 1. We run DCSGD

with Rand-k as k = 1 for 1000 epochs as we calculate the full gradient and inject it with Gaussian noise
Z ∼ N (0, σ2Id) where σ = 10. The learning rate is η = 0.1 and N = 10. Similarly, we integrate the DCSGD
SDE (Thm. 3.6) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 5000. We plot the
averaged trajectories and observe that they overlap to a great degree of agreement.

DSignSGD - Convex Quadratic Function This paragraph refers to the bottom-left of Figure 1. We
optimize the function f(x) = x⊤Hx

2 where H = diag(5, 5). We run DSignSGD for 3000 epochs as we calculate
the full gradient and inject it with Gaussian noise Z ∼ N (0,diag(σ2

i )) where σi = 0.01 ∗ (1 + i), the learning
rate is η = 0.001 and N = 10. Similarly, we integrate the DSignSGD SDE (Thm. 3.10) with Euler-Maruyama
(Algorithm 1) with ∆t = η. Results are averaged over 5000. We plot the averaged trajectories and observe that
they overlap to a great degree of agreement.

DNN on Breast Cancer Dataset [Dua and Graff, 2017] This paragraph refers to the bottom-right
of Figure 1. The DNN has 10 dense layers with 20 neurons each activated with a ReLu. We minimize the binary
cross-entropy loss. We run DCSGD with Rand-k and k = 1000, d = 1502, and for 30000 epochs as we calculate
the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.0001. The learning rate is η = 0.1
and N = 3. Similarly, we integrate the DCSGD SDE (Thm. 3.6) with Euler-Maruyama (Algorithm 1) with
∆t = η. Results are averaged over 3 runs and the shaded areas are the average ± the standard deviation.
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F.2 DCSGD - Scaling Rules (Figure 2)
Transformer on MNIST [Deng, 2012] This paragraph refers to the left of Figure 2. The Architecture is
a scaled-down version of [Dosovitskiy et al., 2021], where the hyperparameters are patch size=28, out features=10,
width=48, depth=3, num heads=6, and dim ffn=192. We minimize the cross-entropy loss. In this experiment,
we run DSGD with some hyperparameters (η,B,N) for 1000 epochs. Then, we need to verify the scaling rules
in Prop. 3.9, meaning that we run DCSGD with hyperparameters that follow the rules reported there and
confirm that they indeed recover the performance of DSGD. Then, we also run DCSGD with combinations
of hyperparameters that do not do so and indeed they do not recover the performance of DSGD. In all our
experiments, we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.01 which
corresponds to B = 1. The learning rate is η = 0.01 and the number of agents is N = 3. DCSGD(η,B, ω,N) is
with ω = 1 and indeed does not perform as DSGD(η,B,N). DCSGD(η,B, ω, (1 + ω)N) almost recovers the
performance of DSGD(η,B,N). The same with DCSGD(η,B, βω, (1 + βω)N), DCSGD(η, (1 + ω)B,ω,N), and
DCSGD(η, (1 + βω)B, βω,N) for β = 2. On the contrary, neither DCSGD(κη,B, βω, (1 + βω)N) for κ = 3 nor
DCSGD(η, δB, ω,N) for δ = 1/3 do so because they do not satisfy our scaling rules. See Figure 6 for a boxplot
comparing the errors at the last iterate: Clearly, those hyperparameter combinations that do not follow our
prescriptions behave much differently DSGD than those that do follow our rules. Results are averaged over 50
runs.

ResNet on CIFAR-10 [Krizhevsky et al., 2009] This paragraph refers to the left of Figure 2. The
ResNet has a (3, 3, 32) convolutional layer with stride 1, followed by a ReLu activation, a second (3, 3, 32)
convolutional layer with stride 1, followed by a residual connection from the first convolutional layer, then a
(2, 2) max pool layer with stride (2, 2). Then the activations are flattened and passed through a dense layer that
compresses them into 128 dimensions, a final ReLu activation, and a final dense layer into the output dimension
10. The output finally goes through a softmax as we minimize the cross-entropy loss. In this experiment, we run
DSGD with some hyperparameters (η,B,N). Then, we need to verify the scaling rules in Prop. 3.9, meaning
that we run DCSGD with hyperparameters that follow the rules reported there and confirm that they indeed
recover the performance of DSGD. Then, we also run it with a combination that does not do so and indeed it
does not recover the performance of DSGD. In all our experiments, we calculate the full gradient and inject
it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.01 which corresponds to B = 1. The learning rate is
η = 0.01 and the number of agents is N = 3. DCSGD(η,B, ω,N) is with ω = 1 and indeed does not perform as
DSGD(η,B,N). DCSGD(η,B, ω, (1 + ω)N) almost recovers the performance of DSGD(η,B,N). The same with
DCSGD(η,B, βω, (1 + βω)N), DCSGD(η, (1 + ω)B,ω,N), and DCSGD(η, (1 + βω)B, βω,N) for β = 2. On the
contrary, neither DCSGD(κη,B, βω, (1 + βω)N) for κ = 3 nor DCSGD(η, δB, ω,N) for δ = 1/3 do so because
they do not satisfy our scaling rules. See Figure 6 for a boxplot comparing the errors at the last iterate: Clearly,
those hyperparameter combinations that do not follow our prescriptions behave much differently DSGD than
those that do follow our rules. Results are averaged over 10 runs.

F.3 DSignSGD - Bound and Linear Speedup (Figure 3)
Bound - Left In this paragraph, we describe how we validated the existence of the phases of DSignSGD as
predicted in Thm. 3.12. We run DSignSGD with η = 0.001 for 800 epochs, N = 12 as we optimize function is
f(x) = x⊤Hx

2 for H = diag(2), and inject Gaussian noise with covariance matrix Σ = σ2Id where σ = 0.1 on the
full gradient. We plot the bounds as per Thm. 3.12 and confirm that they indeed match or bound the dynamics
of the loss as prescribed. Results are averaged over 100 runs.

Linear Speedup - Right In this paragraph, we describe how we validated the linear speedup of DSignSGD
on the ViT described above. We run DSignSGD as we calculate the full gradient and inject it with Gaussian
noise Z ∼ N (0, σ2Id) where σ = 1, η = 0.01 and N ∈ {1, 2, 4, 8, 16}. Results are averaged over 3 runs.

F.4 DSignSGD - Scaling Rules (Figure 4)
Transformer on MNIST [Deng, 2012] This paragraph refers to the left of Figure 4. The ViT is the
same as described above. In this experiment, we run DSignSGD with some hyperparameters (η,B,N). Then, we
need to verify the scaling rules in Prop. 3.14, meaning that we run DSignSGD with hyperparameters that follow
the rules reported there and confirm that they indeed preserve the performance. Then, we also run it with a
combination that does not do so and indeed it does not preserve them. In all our experiments, we calculate
the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.2 which corresponds to B = 1.
The learning rate is η = 0.01 for 1000 epochs and the number of agents is N = 4. Since they follow our scaling
rules, DSignSGD(κη, κ2B,N), DSignSGD(κη,B, κN), and DSignSGD(η, κ2B,N/κ) with κ = 2 indeed preserve
the performance of DSignSGD(η,B,N), while DSignSGD(κη, κ2B,N/κ) does not. See Figure 7 for a boxplot

43



( ,B,
,N

)

( ,B,
, (1

+
)N)

( ,B,
, (1

+
)N)

(
,B,

, (1
+

)N)

( , (1
+

)B,
,N

)

( , (1
+

)B,
,N

)

( , B,
,N

)

10 10

10 8

10 6

10 4

10 2

Re
co

ve
ry

 E
rro

r
DCSGD - Scaling Rules - ViT

( ,B,
,N

)

( ,B,
, (1

+
)N)

( ,B,
, (1

+
)N)

(
,B,

, (1
+

)N)

( , (1
+

)B,
,N

)

( , (1
+

)B,
,N

)

( , B,
,N

)

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Re
co

ve
ry

 E
rro

r

DCSGD - Scaling Rules - ResNet

Figure 6: Box plot of the error between the last iterate of DSGD base run and the runs of DCSGD
with the different combinations of hyperparameters: Those runs that follow our Scaling Rules achieve a
much smaller error than those that do not.

comparing the errors at the last iterate: Clearly, those hyperparameter combinations that do not follow our
prescriptions behave much differently than the base run than those that do follow our rules. Results are averaged
over 5 runs.

ResNet on CIFAR-10 [Krizhevsky et al., 2009] This paragraph refers to the left of Figure 4. The
ResNet is the same as we described above. In this experiment, we run DSignSGD with some hyperparameters
(η,B,N). Then, we need to verify the scaling rules in Prop. 3.14, meaning that we run DSignSGD with
hyperparameters that follow the rules reported there and confirm that they indeed preserve the performance.
Then, we also run it with a combination that does not do so and indeed it does not preserve them. In all our
experiments, we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 1 which
corresponds to B = 1. The learning rate is η = 0.01 for 2000 epochs and the number of agents is N = 4. Since
they follow our scaling rules, DSignSGD(κη, κ2B,N), DSignSGD(κη,B, κN), and DSignSGD(η, κ2B,N/κ) with
κ = 2 indeed preserve the performance of DSignSGD(η,B,N), while DSignSGD(κη, κ2B,N/κ) does not. See
Figure 7 for a boxplot comparing the errors at the last iterate: Clearly, those hyperparameter combinations that
do not follow our prescriptions behave much differently than the base run than those that do follow our rules.
Results are averaged over 10 runs.

F.5 Heavy Tailed and Large Noise (Figure 5)
The ViT is the same as above for each sub-figure.

DCSGD - Heavy-Tailed Noise We train the ViT with DCSGD with Rand-k where k = 100000 out of
d = 133930, η = 0.01 for 1000 epochs, and as we inject noise distributed as a Student’s t with scale Σ = σ2Id
and ν ∈ {1, 2, 3, 8, 64,∞}, and N = 3. Even if the scale is small (σ2 = 10−8): 1) When ν = 1, the optimizer
diverges; 2) When ν = 2, the loss is non-stationary; 3) The larger ν, the more stable and optimal the loss. This
confirms that indeed DCSGD cannot handle Heavy-Tailed noise. Results are averaged over 3 runs.

DCSGD - Large Noise We train the ViT with DCSGD with Rand-k where k = 100000 out of d =
133930, η = 0.01 for 5000 epochs, and as we inject noise distributed as a Gaussian with covariance matrix
σ2 ∈ {10−8, 10−6, 10−4, 10−2, 10−1, 100}, and N = 3. As the variance increases, the optimizer diverges more and
more: This confirms that indeed DCSGD cannot handle large noise as its loss level scales quadratically in the
noise level. Results are averaged over 3 runs.
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Figure 7: Box plot of the error between the last iterate of DSignSGD’s base run and the runs with the
different combinations of hyperparameters: Those runs that follow our Scaling Rules achieve a much
smaller error than those that do not.

DSignSGD - Heavy-Tailed Noise We train the ViT with DSignSGD as we inject noise distributed as a
Student’s t with scale Σ = σ2Id and ν ∈ {1, 2, 3, 8, 64,∞}, and N = 3, η = 0.01 for 1000 epochs. Even if the
scale is large (σ2 = 1) and the noise is of unbounded expected value, DSignSGD never diverges. Of course,
fatter tails imply larger loss: This confirms that indeed DSignSGD can handle Heavy-Tailed noise. Results are
averaged over 3 runs.

DSignSGD - Large Noise We train the ViT with DSignSGD as we inject noise distributed as a Gaussian
with covariance matrix Σ = σ2Id and σ2 ∈ {10−8, 10−6, 10−4, 10−2, 10−1, 100}, and N = 3, η = 0.01 for 8000
epochs. As the variance increases, the optimizer never diverges: This confirms that indeed DSignSGD can handle
large noise as its loss level scales linearly in the noise level. Results are averaged over 3 runs.

F.6 DCSGD - Divergence, Bound, and Linear Speedup (Figure 8)

Divergence We optimize the function f(x) = x⊤Hx
2 where H = diag(100I128). We run DCSGD with Rand-k

for 25 epochs as we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.1.
The learning rate is η = 0.01. As we decrease k ∈ {128, 64, 32, 16, 8, 4, 2, 1}, we see that the convergence slows
down and reaches a larger and larger asymptotic loss value, up to diverging. Results are averaged over 5000
runs.

Linear Speedup In this paragraph, we describe how we validated the linear speedup of DCSGD on the same
ViT as above. We run DCSGD with Rand-k with k = 100000 as we calculate the full gradient and inject it with
Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.01, η = 0.01 and N ∈ {1, 2, 4, 8, 16}. Averaged over 3 runs.

Bound In this paragraph, we describe how we validated the bound DCSGD as predicted in Thm. 3.7. We
run DCSGD with Rand-k for 2000 epochs as we calculate the full gradient and inject it with Gaussian noise
Z ∼ N (0, σ2Id) where σ = 0.1, η = 0.01, k = 2 and N = 12 as we optimize function is f(x) = x⊤Hx

2 for H = I100.
We plot the bounds as per Thm. 3.7 and confirm that they indeed match loss as prescribed. Additionally, we
also verify the Scaling Rules as per Prop. 3.9.

F.7 DCSGD & DSignSGD - Stationary Distributions (Figure 9)
On the left of Figure 9, we validate the Stationary Distribution of DCSGD run with Rand-k while on the right
we do the same for DSignSGD.
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Figure 9: Verification of the Stationary Distribution of DCSGD and DSignSGD on a convex quadratic
function.

DCSGD We optimize the function f(x) = x⊤Hx
2 where H = diag(2, 1, 1, 1, 1, 1, 1, 1, 1, 1). We run DCSGD

with Rand-k for 1000 epochs as we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id)
where σ = 0.1. The learning rate is η = 0.01, k = 3. We plot the evolution of the average variances with the
theoretical predictions of Prop. B.13: Results are averaged over 50000. The experimental moments match the
theoretical predictions.

DSignSGD We optimize the function f(x) = x⊤Hx
2 where H = diag(2, 1, 1, 1, 1, 1, 1, 1, 1, 1). We run

DSignSGD for 10000 epochs as we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id)
where σ = 0.1. The learning rate is η = 0.001. We plot the evolution of the average variances with the theoretical
predictions of Prop. C.16: Results are averaged over 5000. The experimental moments match the theoretical
predictions.

F.8 Top-k and its Modification - Resilience to Heavy-Tailed Noise (Figure 10)
To produce Figure 10, we train the ResNet above on CIFAR-10. As above, we inject heavy-tailed noise onto the
full gradients and observe that Top-k cannot handle such noise. However, using Top-k on top of Normalized
SGD seems to mitigate this issue. Therefore, we confirm that sign compression is not the only one that can
handle heavy-tailed noise and that there is room to develop alternative optimizers.

46



0 200 400 600 800 1000
Iterations

101

2 × 100

3 × 100

4 × 100

6 × 100

Lo
ss

Top-k Heavy Tail Failure - ResNet
= 1
= 2
= 3
= 8
= 64
=

0 200 400 600 800 1000
Iterations

1.4 × 100

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

2.4 × 100

Lo
ss

Norm. Top-k Heavy Tail - ResNet

= 1
= 2
= 3
= 8
= 64
=

Figure 10: On the left, Top-k fails at handling increasingly heavy-tailed noise, while on the right we see
that combining Top-k with Normalized SGD is promising.

F.9 Heavy Tailed and Large Noise (Figure 11)

DCSGD - Large Noise - Top Left We optimize the function f(x) = x⊤Hx
2 where H = I10 with DCSGD

with Rand-k where k = 1, η = 0.01, and as we inject noise distributed as a Gaussian with covariance matrix
Σ = σ2Id and σ2 ∈ {10−4, 10−2, 100, 102, 104}, and N = 3. As the variance increases, the optimizer diverges
more and more: This confirms that indeed DCSGD cannot handle large noise as its loss level scales quadratically
in the noise level. The asymptotic loss level matches that predicted in Thm. 3.7. Results are averaged over 100
runs.

DSignSGD - Large Noise - Top Right We optimize the function f(x) = x⊤Hx
2 where H = I10 with

DSignSGD as we inject noise distributed as a Gaussian with covariance matrix σ2 ∈ {10−4, 10−2, 100, 102, 104},
η = 0.001, and N = 3. As the variance increases, the optimizer never diverges: This confirms that indeed
DSignSGD can handle large noise as its loss level scales linearly in the noise level. The asymptotic loss level
matches that predicted in Thm. 3.12. Results are averaged over 100 runs.

DCSGD - Heavy-Tailed Noise - Bottom Left We optimize the function f(x) = x⊤Hx
2 where H = I10

with DCSGD with Rand-k where k = 1, η = 0.01, and as we inject noise distributed as a Gaussian with
covariance matrix Σ = σ2Id and σ = 0.1, ν ∈ {1, 2, 3, 8, 64,∞}, and N = 3. Even if the scale is small: 1) When
ν = 1, the optimizer diverges; 2) When ν = 2, the loss is non-stationary; 3) The larger ν, the more stable and
optimal the loss. This confirms that indeed DCSGD cannot handle Heavy-Tailed noise. Results are averaged
over 100 runs.

DSignSGD - Heavy-Tailed Noise - Bottom Right We optimize the function f(x) = x⊤Hx
2 where H =

I10 with DSignSGD as we inject noise distributed as a Student’s t with scale Σ = σ2Id and ν ∈ {1, 2, 3, 8, 64,∞},
and N = 3. Even if the scale is large (σ = 1) noise is of unbounded expected value, DSignSGD never diverges.
Of course, fatter tails imply larger loss: This confirms that indeed DSignSGD can handle Heavy-Tailed noise.
Results are averaged over 100 runs.
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Figure 11: DCSGD cannot handle large noise as its asymptotic loss level scales quadratically in the
noise level (Top Left); on the contrary, DSignSGD can as its level scales linearly in the noise level (Top
Right); DCSGD cannot handle heavy-tailed noise (Bottom Left) while DSignSGD can (Bottom Right).

G Scaling Rule Validation - GPT2
This experiment aims to validate some of the scaling rules derived for DCSGD (see Table 1 related to Proposition
3.9) and DSignSGD (see Proposition 3.14) using a GPT-2-like model. To be precise, in these experiments, we
fix a base run optimizer: Optimizer(H), where H is a configuration of hyperparameters (e.g., the learning rate
η, the batch size B, or the number of agents N , i.e., GPUs). Then, we run the same optimizer with other
hyperparameter configurations (H̃). We verify that hyperparameter configurations (H̃) that satisfy the functional
relationships prescribed by our propositions achieve a performance much closer to the base run (H) than those
configurations that violate such prescriptions. This demonstrates that when adjustments to hyperparameters
are necessary to accommodate new scenarios, one can follow our scaling rules to preserve the performance of
DSignSGD/DCSGD without needing to repeat the fine-tuning process. For example, one might desire larger
batch sizes to fully utilize newly available larger GPUs, or face a reduction in available GPUs due to budget
cuts. We highlight that, in general, scaling rules are not meant to be exact prescriptions, but rather to give a
principled approach to reduce the hyperparameter search space.

G.1 Model Architecture and Dataset
The model architecture is provided in the popular GitHub repository nanoGPT by Andrej Karpathy: All details
can, of course, be found on the repository — We used the smallest configuration with 124M parameters. Regarding
the dataset, we train our models on the FineWeb-Edu dataset. To do so, we minimize the Cross-entropy loss for
10, 000 iterations. Note that we use no learning rate schedulers, as we do not aim for optimal performance but
rather for clear and fair experimental validation of our theoretical insights. We encourage future work to explore
the validity of our theory in larger and more realistic settings.
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G.1.1 DSignSGD - (Figure 12)

In this experiment, we fix the “base run” optimizer DSignSGD(η,B,N) by selecting η = 0.001, B = 4, and
N = 4. We selected 6 different hyperparameter configurations: 3 that satisfy our scaling rules and 3 that do
not. We ran each configuration 5 times and computed the average absolute percentage error of the last 100
iterations with respect to the “base run”. Figure 12 shows the boxplots of these errors, and one can see that
configurations that satisfy our scaling rules (marked in green in the figure) achieve a significantly lower error
compared to those that do not follow them (marked in red).
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Figure 12: Boxplots of errors: Validation of Scaling Rules for DSignSGD on a 124M GPT2 model.

G.1.2 DCSGD - (Figure 13)

In this experiment, we replicate the effort above by optimizing the model with DSGD(η,B,N) as a “base run”
(i.e., no compression). We select η = 0.1 and B = N = 1. Then, we run DCSGD with the Rand-k compressor;
in this case, the compression factor ω is equal to d

k , where d is the total number of trainable parameters and
k is the number of parameters that at each iteration are randomly selected to be trained — The remaining
d− k are left unchanged for that iteration. We simulated 12 different configurations and computed the average
absolute percentage error of the last 100 iterations with respect to the “base run”. Since Table 1 contains many
more rules than DSignSGD, we opt for a different style of visualization that showcases the validity of multiple
rules simultaneously. Since we had to simulate many more configurations, we only ran each configuration 3
times.

Left of Figure 13: In this figure, we show that: 1) For fixed (η,B, ω), increasing the number of agents N helps
mitigate the performance loss due to compression (Rule 1 in green); 2) For fixed (η,N, ω), increasing the batch
size B helps mitigate the performance loss due to compression (Rule 2 in orange); 3) Combining these two rules
is even better (Rule 3).

Right of Figure 13: In this figure, we ran DCSGD while doubling the learning rate (η = 0.2), thereby combining
the effects of compression and increased learning rate on performance. Once again, we observe that increasing
compression leads to worse performance, even more so when the learning rate has doubled. However, in
accordance with our scaling rules, for any compression level, increasing N and B helps mitigate the performance
loss.
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