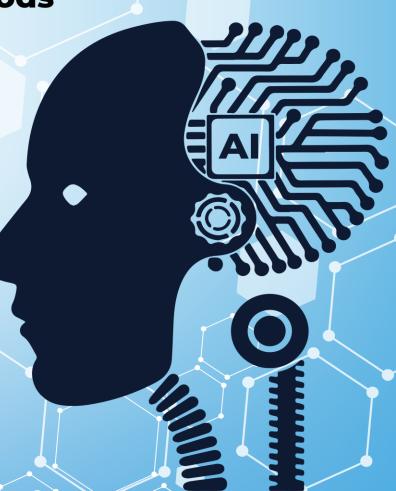
Distributed Second Order Methods with Fast Rates and Compressed Communication

Maths & AI: MIPT-UGA young researchers workshop

Rustem Islamov



Authors

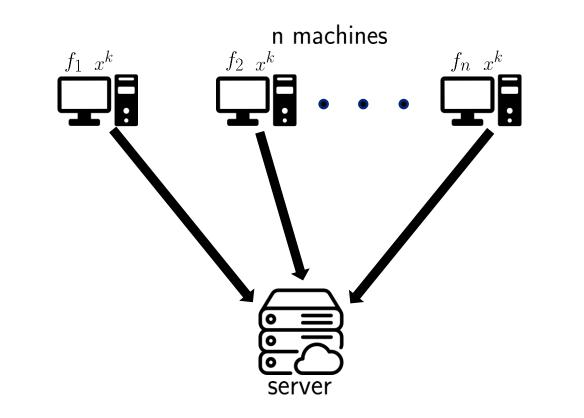
Xun Qian KAUST

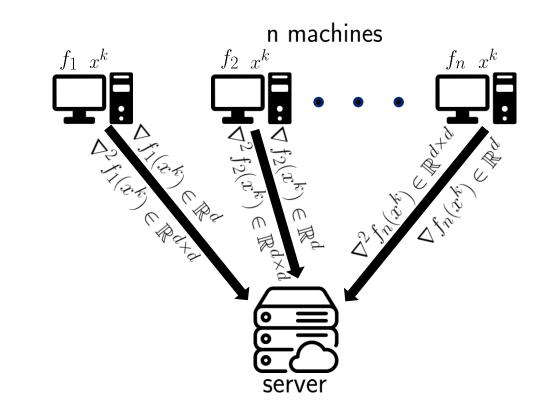
Peter Richtárik KAUST

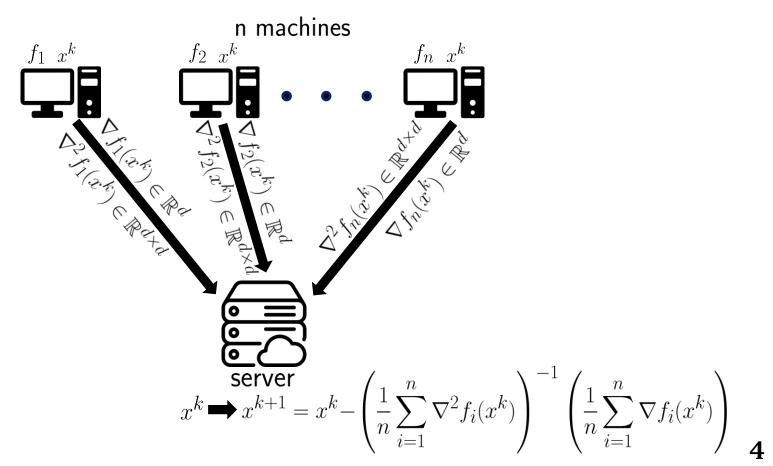
Rustem Islamov, Xun Qian and Peter Richtárik Distributed Second Order Methods with Fast Rates and Compressed Communication Accepted to International Conference on Machine Learning 2021 arXiv:2102.07158, 2021

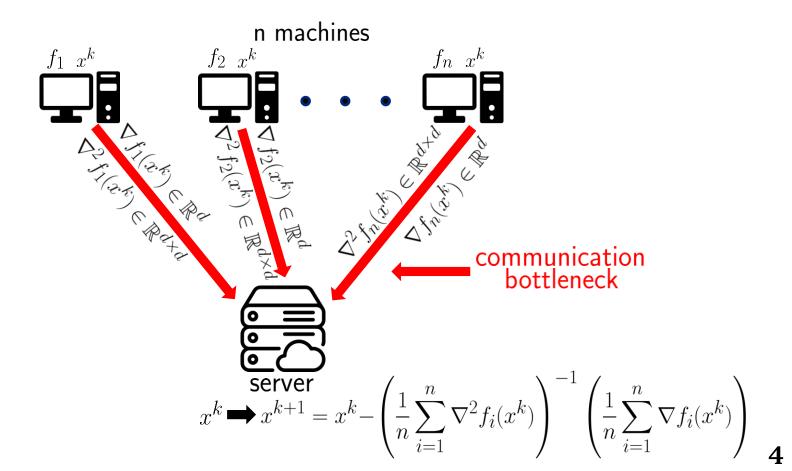
Outline

- 1. Distributed Optimization
- 2. Motivation
- 3. Newton's method
- 4. Newton Star
- 5. Newton Learn
- 6. Further results
- 7. Experiments









How to handle communication bottleneck?

Local methods

 $x_i^{k+1} = \begin{cases} x_i^k - \gamma \nabla f_i(x^k) & \text{if } k \mod T \neq 0\\ \frac{1}{n} \sum_{i=1}^n \left(x_i^k - \gamma \nabla f_i(x^k) \right) & \text{otherwise} \end{cases}$

How to handle communication bottleneck?

Local methods

 $x_i^{k+1} = \begin{cases} x_i^k - \gamma \nabla f_i(x^k) & \text{if } k \mod T \neq 0\\ \frac{1}{n} \sum_{i=1}^n \left(x_i^k - \gamma \nabla f_i(x^k) \right) & \text{otherwise} \end{cases}$

Examples: FedAvg, SCAFFOLD, Local-GD Decrease the number of communication rounds

How to handle communication bottleneck?

Local methods

 $x_i^{k+1} = \begin{cases} x_i^k - \gamma \nabla f_i(x^k) & \text{if } k \mod T \neq 0\\ \frac{1}{n} \sum_{i=1}^n \left(x_i^k - \gamma \nabla f_i(x^k) \right) & \text{otherwise} \end{cases}$

SCAFFOLD, Local-GD Decrease the number of

communication rounds

Examples: FedAvg,

Compression

$$x^{k+1} = x^k - \frac{1}{n} \sum_{i=1}^n \mathcal{C}_i^k \left(\nabla f_i(x^k) \right)$$

How to handle **communication bottleneck?**

Local methods

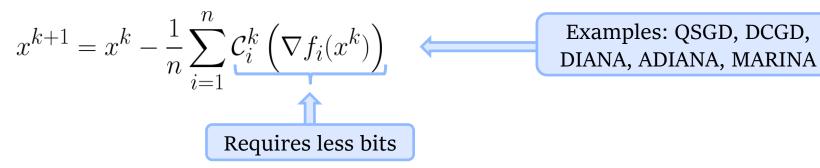
$$x_i^{k+1} = \begin{cases} x_i^k - \gamma \nabla f_i(x^k) & \text{if } k \mod 2\\ \frac{1}{n} \sum_{i=1}^n \left(x_i^k - \gamma \nabla f_i(x^k) \right) & \text{otherwise} \end{cases}$$

od $T \neq 0$

Examples: FedAvg, SCAFFOLD, Local-GD

Decrease the number of communication rounds

Compression



Pros and Cons of Distributed First order methods

Compressed methods

- Very well investigated already
- Provably benefit from compressed communication
- 😣 Rates depend on the condition number
- 😣 Hard to find optimal stepsizes

Examples: QSGD, DCGD, DIANA, ADIANA, MARINA

Pros and Cons of Distributed First order methods

Compressed methods

- Very well investigated already
- Provably benefit from compressed communication
- 😣 Rates depend on the condition number
- 😣 Hard to find optimal stepsizes

Local methods

- 🕑 Not that well understood
- Very limited communication avoidance effect
- 😣 Rates depend on the condition number
- 😣 Hard to find optimal stepsizes

Examples: QSGD, DCGD, DIANA, ADIANA, MARINA

Bad for heterogeneous data

Second Order Methods to the Rescue?

Existing second order methods **suffer from at least one of these issues:**

- Sommunication cost is high (communication of Hessian matrices)
- 😣 Rates depend on the condition number
- Often no problem with stepsize selection

Second Order Methods to the Rescue?

Existing second order methods **suffer from at least one of these issues:**

- Communication cost is high (communication of Hessian matrices)
- 😵 Rates depend on the condition number
- Often no problem with stepsize selection

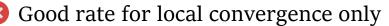
GOAL

Develop a communication-efficient distributed Newton-type method whose (local) convergence rate is independent of the condition number

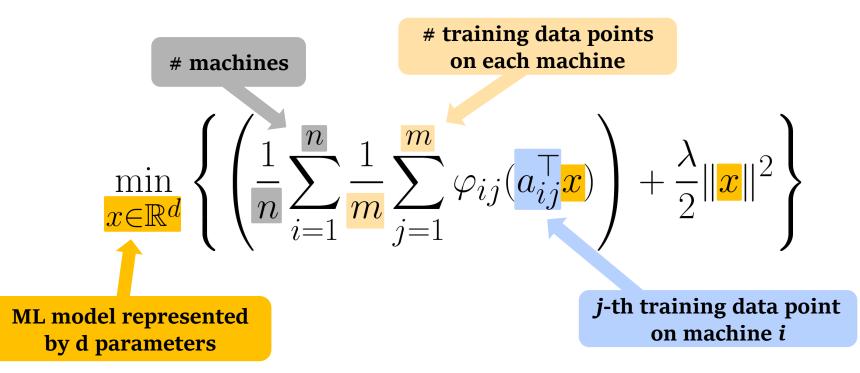
Can provably benefit from communication compression

Rate is independent of the condition number 8 Good rate for local convergence only

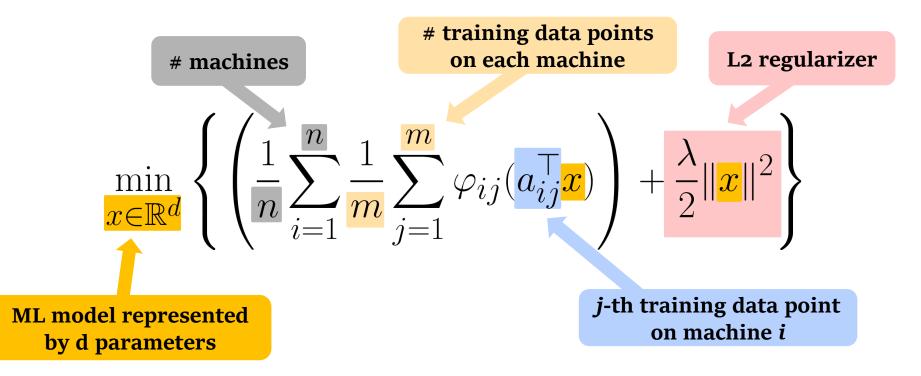
- No issue with stepsize selection
- New nature of local steps



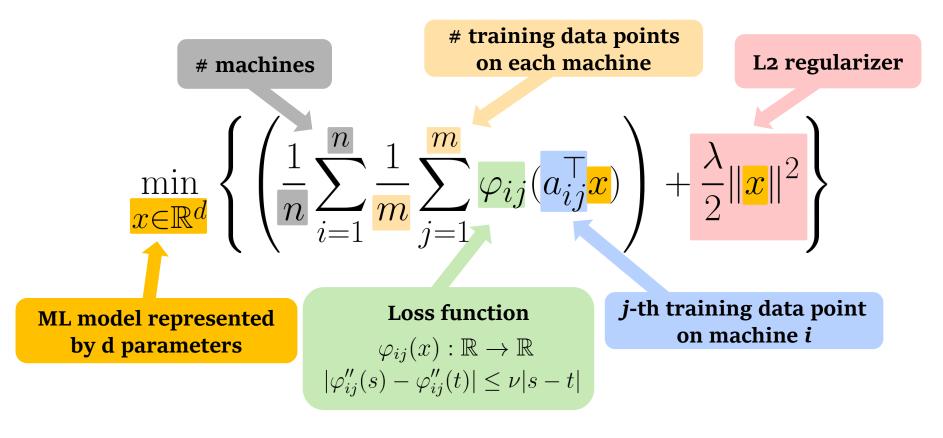
The Problem



The Problem



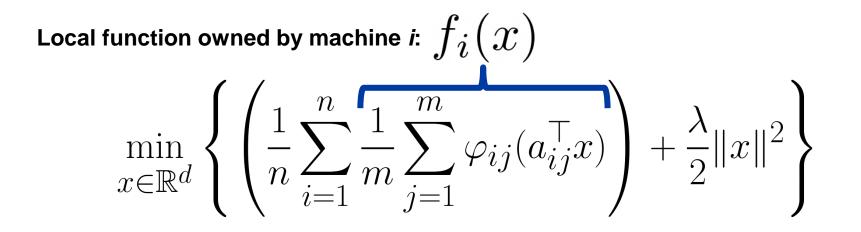
The Problem



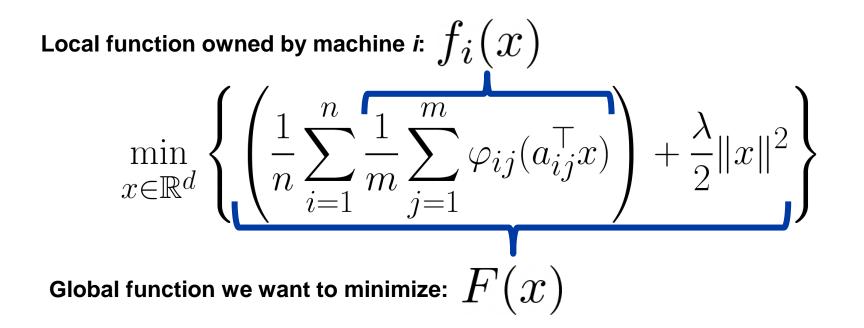
The Problem: Local and Global Functions

$$\min_{x \in \mathbb{R}^d} \left\{ \left(\frac{1}{n} \sum_{i=1}^n \frac{1}{m} \sum_{j=1}^m \varphi_{ij}(a_{ij}^\top x) \right) + \frac{\lambda}{2} \|x\|^2 \right\}$$

The Problem: Local and Global Functions



The Problem: Local and Global Functions



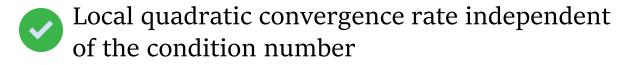
$$x^{k+1} = x^k - \left(\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(x^k) + \lambda \mathbf{I}_d\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k\right)$$

$$x^{k+1} = x^k - \left(\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(x^k) + \lambda \mathbf{I}_d\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k\right)$$

Can be computed
by machine *i*
Can be computed
by machine *i*

$$x^{k+1} = x^k - \left(\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(x^k) + \lambda \mathbf{I}_d\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k\right)$$

Can be computed by machine *i*
Can be computed by machine *i*



Expensive $O(d^2)$ communication cost

$$x^{k+1} = x^k - \left(\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(x^k) + \lambda \mathbf{I}_d\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k\right)$$

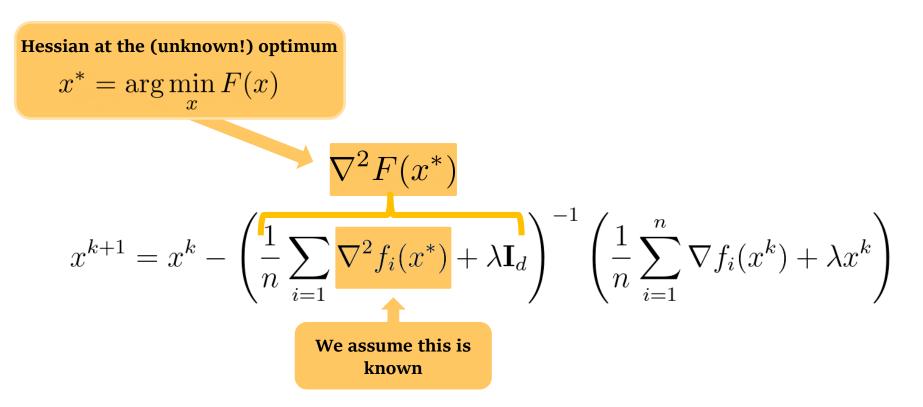
Can be computed
by machine *i*
Can be computed
by machine *i*

Expensive $O(d^2)$ communication cost

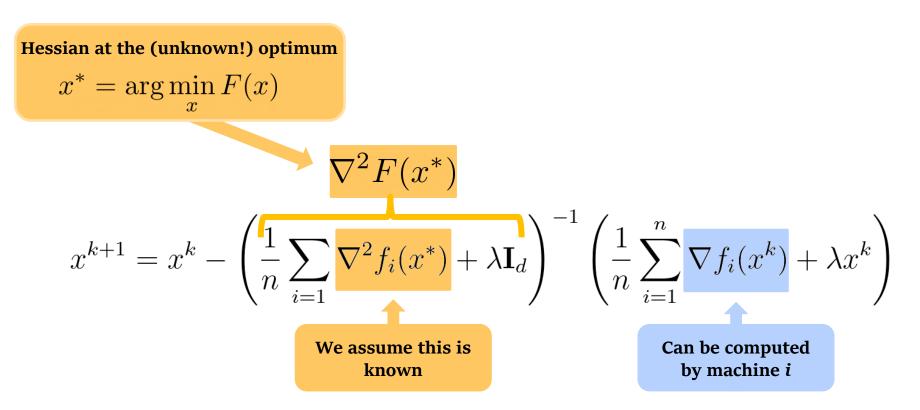
NEWTON-STAR

$$x^{k+1} = x^k - \left(\frac{1}{n}\sum_{i=1}^{n}\nabla^2 f_i(x^*) + \lambda \mathbf{I}_d\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^{n}\nabla f_i(x^k) + \lambda x^k\right)$$

NEWTON-STAR



NEWTON-STAR

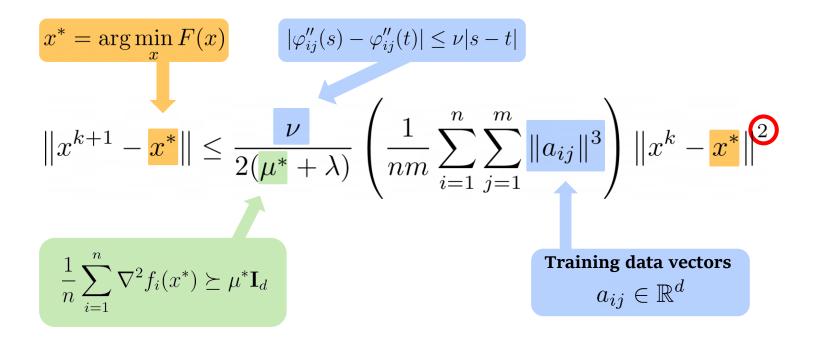


NEWTON-STAR: Local Quadratic Convergence

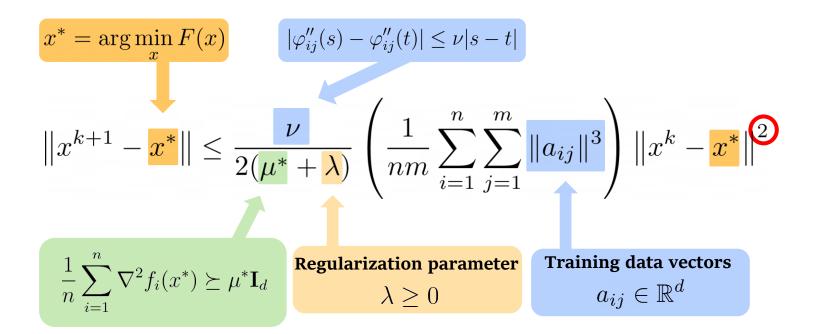
$$\begin{aligned} x^* &= \arg\min_{x} F(x) \\ \|x^{k+1} - x^*\| \le \frac{\nu}{2(\mu^* + \lambda)} \left(\frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m \|a_{ij}\|^3 \right) \|x^k - x^*\|^2 \end{aligned}$$

Training data vectors $a_{ij} \in \mathbb{R}^d$

NEWTON-STAR: Local Quadratic Convergence



NEWTON-STAR: Local Quadratic Convergence



NEWTON-STAR: Summary

$$x^{k+1} = x^k - \left(\nabla^2 F(x^*)\right)^{-1} \nabla F(x^k)$$

	Cheap <i>O</i> (<i>d</i>)	communication	cost
--	-----------------------------	---------------	------

X The Hessian at the optimum in unknown

$$\nabla^2 F(x) = \left(\frac{1}{n} \sum_{i=1}^n \frac{1}{m} \sum_{j=1}^m \varphi_{ij}''(a_{ij}^\top x) a_{ij} a_{ij}^\top\right) + \lambda \mathbf{I}_d$$

$$\nabla^2 F(x) = \left(\frac{1}{n} \sum_{i=1}^n \frac{1}{m} \sum_{j=1}^m \varphi_{ij}''(a_{ij}^\top x) a_{ij} a_{ij}^\top\right) + \lambda \mathbf{I}_d$$
Assumption 1
$$\varphi_{ij}: \mathbb{R} \to \mathbb{R} \text{ is convex} \\ (\Rightarrow \varphi_{ij}''(t) \ge 0 \quad \forall t)$$

$$\nabla^{2} F(x) = \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{m} \sum_{j=1}^{m} \varphi_{ij}^{\prime\prime}(a_{ij}^{\top}x) a_{ij} a_{ij}^{\top}\right) + \lambda \mathbf{I}_{d}$$

$$Assumption 1$$

$$\varphi_{ij} : \mathbb{R} \to \mathbb{R} \text{ is convex}$$

$$(\Rightarrow \varphi_{ij}^{\prime\prime}(t) \ge 0 \ \forall t)$$

$$Assumption 2$$

$$\lambda > 0$$

Rank-1 matrices formed from the training data vectors

$$\nabla^{2} F(x) = \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{m} \sum_{j=1}^{m} \varphi_{ij}''(a_{ij}^{\top} x) a_{ij} a_{ij}^{\top}\right) + \lambda \mathbf{I}_{d}$$

$$Assumption 1$$

$$\varphi_{ij} : \mathbb{R} \to \mathbb{R} \text{ is convex}$$

$$(\Rightarrow \varphi_{ij}''(t) \ge 0 \quad \forall t)$$

$$Assumption 2$$

$$\lambda > 0$$

$$x^{k+1} = x^k - \left(\mathbf{H}^k\right)^{-1} \nabla F(x^k)$$

Desire: Communicationefficient "approximation" of the Hessian

$$x^{k+1} = x^k - \left(\mathbf{H}^k\right)^{-1} \nabla F(x^k)$$

$$\mathbf{H}^{k} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\frac{1}{m} \sum_{j=1}^{m} h_{ij}^{k} a_{ij} a_{ij}^{\top}}_{\approx \nabla^{2} f_{i}(x^{k})} + \lambda \mathbf{I}_{d}$$

Desire: Communicationefficient "approximation" of the Hessian

$$x^{k+1} = x^k - \left(\mathbf{H}^k\right)^{-1} \nabla F(x^k)$$

Wish list:

•
$$h_{ij}^k \to \varphi_{ij}''(a_{ij}^\top x^*)$$
 as $k \to \infty$

$$\mathbf{H}^{k} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\frac{1}{m} \sum_{j=1}^{m} h_{ij}^{k} a_{ij} a_{ij}^{\top}}_{\mathbf{\gamma}} + \lambda \mathbf{I}_{d}}_{\mathbf{\gamma}}$$

$$\approx \nabla^{2} f_{i}(x^{k})$$

Desire: Communicationefficient "approximation" of the Hessian

$$x^{k+1} = x^k - \left(\mathbf{H}^k\right)^{-1} \nabla F(x^k)$$

Wish list:

- $h_{ij}^k \to \varphi_{ij}''(a_{ij}^\top x^*)$ as $k \to \infty$
- $h_{i:}^{k+1} h_{i:}^k \in \mathbb{R}^m$ is sparse $\forall i$ $h_{i:}^k = (h_{i1}^k, h_{i2}^k, \dots, h_{im}^k)^\top$

$$\mathbf{H}^{k} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{m} \sum_{j=1}^{m} h_{ij}^{k} a_{ij} a_{ij}^{\top} + \lambda \mathbf{I}_{d}$$
$$\approx \nabla^{2} f_{i}(x^{k})$$

Desire: Communicationefficient "approximation" of the Hessian

$$x^{k+1} = x^k - \left(\mathbf{H}^k\right)^{-1} \nabla F(x^k)$$

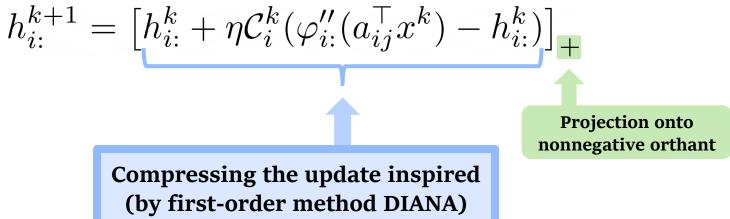
Wish list:

- $h_{ij}^k \to \varphi_{ij}''(a_{ij}^\top x^*)$ as $k \to \infty$
- $h_{i:}^{k+1} h_{i:}^k \in \mathbb{R}^m$ is sparse $\forall i$ $h_{i:}^k = (h_{i1}^k, h_{i2}^k, \dots, h_{im}^k)^\top$
- Local rate independent of the condition number

$$\mathbf{H}^{k} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{m} \sum_{j=1}^{m} h_{ij}^{k} a_{ij} a_{ij}^{\top} + \lambda \mathbf{I}_{d}$$

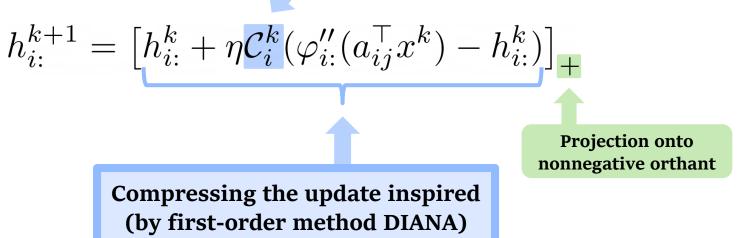
$$\approx \nabla^{2} f_{i}(x^{k})$$

 $h_{i:}^{k+1} = \left[h_{i:}^{k} + \eta C_{i}^{k}(\varphi_{i:}^{\prime\prime}(a_{ij}^{\top}x^{k}) - h_{i:}^{k})\right]_{+}$ Compressing the update inspired (by first-order method DIANA)



Compression operator (e.g., sparsification such as Rand-R)

$$\mathbb{E}\left[\|\mathcal{C}_{i}^{k}(h)\|^{2}\right] \leq (1+\omega)\|h\|^{2} \quad \forall \ h \in \mathbb{R}^{m}$$
$$\mathbb{E}\left[\mathcal{C}_{i}^{k}(h)\right] = h \quad \forall \ h \in \mathbb{R}^{m}$$



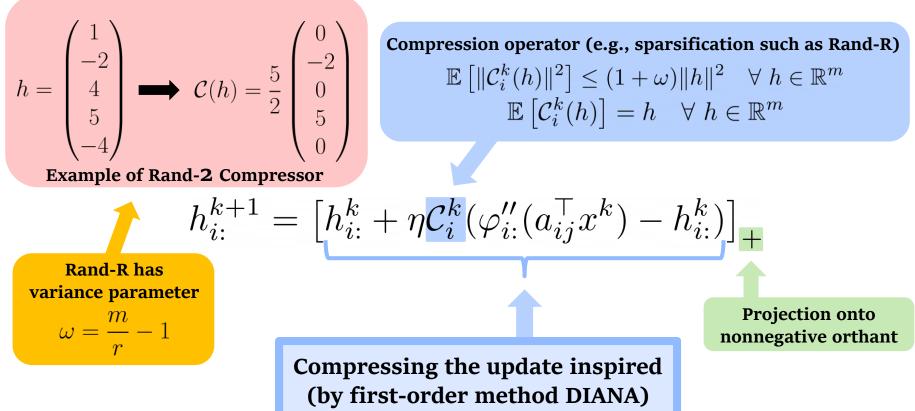
$$h = \begin{pmatrix} 1 \\ -2 \\ 4 \\ 5 \\ -4 \end{pmatrix} \longrightarrow C(h) = \frac{5}{2} \begin{pmatrix} 0 \\ -2 \\ 0 \\ 5 \\ 0 \end{pmatrix}$$
Compression operator (e.g., sparsification such as Rand-R)

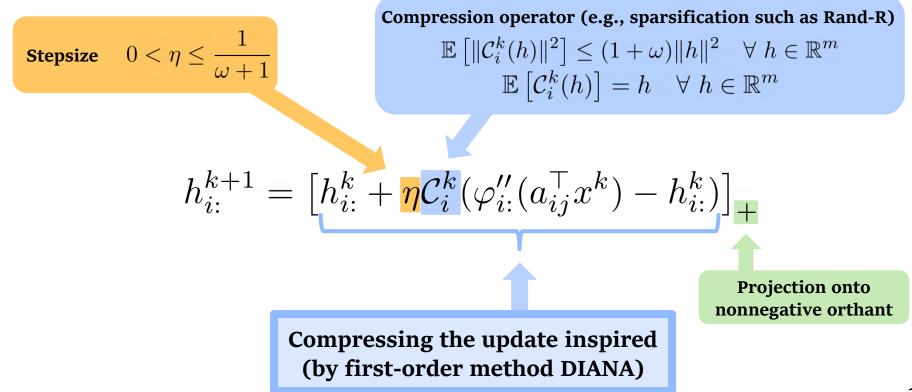
$$\mathbb{E} \left[\|C_i^k(h)\|^2 \right] \le (1+\omega) \|h\|^2 \quad \forall h \in \mathbb{R}^m$$

$$\mathbb{E} \left[C_i^k(h) \right] = h \quad \forall h \in \mathbb{R}^m$$

$$\mathbb{E} \left[C_i^k(h) \right] = h \quad \forall h \in \mathbb{R}^m$$

$$h_{i:}^{k+1} = \left[h_{i:}^k + \eta C_i^k (\varphi_{i:}''(a_{ij}^\top x^k) - h_{i:}^k) \right] +$$
Projection onto nonnegative orthant
Compressing the update inspired (by first-order method DIANA)





This is a local result:

 $\left\|x^0 - x^*\right\| \le \frac{\lambda}{2\sqrt{3}\nu R^3}$

$$\mathbb{E}\left[\Phi_{1}^{k}\right] \leq \left(1 - \min\left\{\frac{5}{8}, \frac{\eta}{2}\right\}\right)^{k} \Phi_{1}^{0}$$

This is a local result:

 $\left\|x^0 - x^*\right\| \le \frac{\lambda}{2\sqrt{3}\nu R^3}$

$$\mathbb{E}\left[\Phi_{1}^{k}\right] \leq \left(1 - \min\left\{\frac{5}{8}, \frac{\eta}{2}\right\}\right)^{k} \Phi_{1}^{0}$$

Lyapunov function

$$\Phi_1^k := \left\| x^k - x^* \right\|^2 + \frac{1}{3\eta\nu^2 R^2} \frac{1}{n} \sum_{i=1}^n \frac{1}{m} \sum_{j=1}^m |h_{ij}^k - \varphi''(a_{ij}^\top x^*)|^2$$
$$R := \max_{ij} \|a_{ij}\|$$

This is a local result:

$$\left\|x^0 - x^*\right\| \le \frac{\lambda}{2\sqrt{3}\nu R^3}$$

Rate depends on the compressor only

$$\mathbb{E}\left[\Phi_{1}^{k}\right] \leq \left(1 - \min\left\{\frac{5}{8}, \frac{\eta}{2}\right\}\right)^{k} \Phi_{1}^{0}$$

Lyapunov function

$$\Phi_1^k := \left\| x^k - x^* \right\|^2 + \frac{1}{3\eta\nu^2 R^2} \frac{1}{n} \sum_{i=1}^n \frac{1}{m} \sum_{j=1}^m |h_{ij}^k - \varphi''(a_{ij}^\top x^*)|^2$$
$$R := \max_{ij} \|a_{ij}\|$$

This is a local result:

$$\left\|x^0 - x^*\right\| \le \frac{\lambda}{2\sqrt{3}\nu R^3}$$

Rate depends on the compressor only

$$\mathbb{E}\left[\frac{\Phi_{1}^{k}}{4}\right] \leq \left(1 - \min\left\{\frac{5}{8}, \frac{\eta}{2}\right\}\right)^{k} \Phi_{1}^{k}$$

Lyapunov function

$$\Phi_1^k := \left\| x^k - x^* \right\|^2 + \frac{1}{3\eta\nu^2 R^2} \frac{1}{n} \sum_{i=1}^n \frac{1}{m} \sum_{j=1}^m |h_{ij}^k - \varphi''(a_{ij}^\top x^*)|^2$$

$$R := \max_{ij} \|a_{ij}\|$$

 $h_{ij}^k \to \varphi_{ij}''(a_{ij}^\top x^*)$ as $k \to \infty$

We provably learn the Hessian

	Conv	ergence			
${f Method}$	$\mathbf{result}\ ^{\dagger}$	type	rate	Rate independent of the condition number?	Theorem
NEWTON-STAR (NS) (12)	$r_{k+1} \le cr_k^2$	local	quadratic	1	2.1
MAX-NEWTON (MN) Algorithm 4	$r_{k+1} \le c r_k^2$	local	quadratic	1	D.1
NEWTON-LEARN (NL1)	$\Phi_1^k \le \theta_1^k \Phi_1^0$	local	linear	1	3.2
Algorithm 1	$r_{k+1} \le c\theta_1^k r_k$	local	superlinear	1	3.2
NEWTON-LEARN (NL2)	$\Phi_2^k \le \theta_2^k \Phi_2^0$	local	linear	1	3.5
Algorithm 2	$r_{k+1} \le c\theta_2^k r_k$	local	superlinear	1	3.5
	$\Delta_k \leq \frac{c}{k}$	global	$\operatorname{sublinear}$	×	4.3
CUBIC-NEWTON-LEARN (CNL)	$\Delta_k \le c \exp(-k/c)$	$_{\rm global}$	linear	×	4.4
Algorithm 3	$\Phi_3^k \le \theta_3^k \Phi_3^0$	local	linear	1	4.5
	$r_{k+1} \le c\theta_3^k r_k$	local	superlinear	1	4.5

Quantities for which we prove convergence: (i) distance to solution $r_k := \|x^k - x^*\|$; (ii) Lyapunov function $\Phi_q^k := \|x^k - x^*\|^2 + c_q \sum_{i=1}^n \sum_{j=1}^m (h_{ij}^k - h_{ij}(x^*))^2$ for q = 1, 2, 3, where $h_{ij}(x^*) = \varphi_{ij}''(a_{ij}^\top x^*)$ (see (5)); (iii) Function value suboptimality $\Delta_k := P(x^k) - P(x^*)$

 † constant c is possibly different each time it appears in this table. Refer to the precise statements of the theorems for the exact values.

	Conv	ergence			
Method	$\mathbf{result}\ ^{\dagger}$	type	rate	Rate independent of the condition number?	Theorem
NEWTON-STAR (NS) (12)	$r_{k+1} \le c r_k^2$	local	quadratic	✓	2.1
MAX-NEWTON (MN) Algorithm 4	$r_{k+1} \le cr_k^2$	local	quadratic	✓	D.1
NEWTON-LEARN (NL1)	$\Phi_1^k \le \theta_1^k \Phi_1^0$	local	linear	✓	3.2
Algorithm 1	$r_{k+1} \le c\theta_1^k r_k$	local	superlinear	1	3.2
NEWTON-LEARN (NL2)	$\Phi_2^k \le \theta_2^k \Phi_2^0$	local	linear	✓	3.5
Algorithm 2	$r_{k+1} \leq c \theta_2^k r_k$	local	superlinear	1	3.5
	$\Delta_k \leq \frac{c}{k}$	global	$\operatorname{sublinear}$	×	4.3
CUBIC-NEWTON-LEARN (CNL)	$\Delta_k \le c \exp(-k/c)$	$_{\mathrm{global}}$	linear	×	4.4
Algorithm 3	$\Phi_3^k \le \theta_3^k \Phi_3^0$	local	linear	1	4.5
	$r_{k+1} \leq c\theta_3^k r_k$	local	superlinear	1	4.5

Quantities for which we prove convergence: (i) distance to solution $r_k := \|x^k - x^*\|$; (ii) Lyapunov function $\Phi_q^k := \|x^k - x^*\|^2 + c_q \sum_{i=1}^n \sum_{j=1}^m (h_{ij}^k - h_{ij}(x^*))^2$ for q = 1, 2, 3, where $h_{ij}(x^*) = \varphi_{ij}''(a_{ij}^\top x^*)$ (see (5)); (iii) Function value suboptimality $\Delta_k := P(x^k) - P(x^*)$

^{\dagger} constant *c* is possibly different each time it appears in this table. Refer to the precise statements of the theorems for the exact values.

type local	rate	Rate independent of the condition number?	Theorem
local	quadratic		
	quadratic		2.1
local	quadratic	1	D.1
local	linear	1	3.2
k_k local	superlinear	1	3.2
local	linear	1	3.5
k local	superlinear	1	3.5
global	$\operatorname{sublinear}$	×	4.3
k/c) global	linear	×	4.4
local	linear	1	4.5
k local	superlinear	1	4.5
	$\begin{array}{c c} & \operatorname{local} \\ & \operatorname{local} \\ & \operatorname{local} \\ & \\ k & \operatorname{local} \\ & \\ g obal \\ c/c) & g obal \\ & \\ & \operatorname{local} \\ & \\ k & \operatorname{local} \end{array}$	$\begin{array}{c c} \ \ local & linear \\ k & local & superlinear \\ local & linear \\ k & local & superlinear \\ global & sublinear \\ k/c) & global & linear \\ local & linear \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Quantities for which we prove convergence: (i) distance to solution $r_k := \|x^k - x^*\|$; (ii) Lyapunov function $\Phi_q^k := \|x^k - x^*\|^2 + c_q \sum_{i=1}^n \sum_{j=1}^m (h_{ij}^k - h_{ij}(x^*))^2$ for q = 1, 2, 3, where $h_{ij}(x^*) = \varphi_{ij}''(a_{ij}^\top x^*)$ (see (5)); (iii) Function value suboptimality $\Delta_k := P(x^k) - P(x^*)$

^{\dagger} constant *c* is possibly different each time it appears in this table. Refer to the precise statements of the theorems for the exact values.

	Conv	ergence				
Method	$\mathbf{result}\ ^{\dagger}$	tyr	rate	Rate independent of the condition number?	Theorem	
NEWTON-STAR (NS) (12)	$r_{k+1} \le c r_k^2$	local	quadratic	1	2.1	
MAX-NEWTON (MN) Algorithm 4	$r_k \perp _ cr_k^2$	local	quadratic	1	D.1	
NEWTON-LEARN (NL1)	$\Psi_1^k \le \theta_1^k \Phi_1^0$	local	linear	1	3.2	
Algorithm 1	$r_{k+1} \le c\theta_1^k r_k$	local	superlinear	1	3.2	
NEWTON-LEARN (NL2)	$\Phi_2^k \le \theta_2^k \Phi_2^0$	local	linear	1	3.5	
Algorithm 2	$r_{k+1} \le c\theta_2^k r_k$	local	superlinear	1	3.5	
	$\Delta_k \leq \frac{c}{k}$	global	sublinear	×	4.3	
CUBIC-NEWTON-LEARN (CNL)	$\Delta_k \le c \exp(-k/c)$	global	linear	×	4.4	
Algorithm 3	$\Phi_3^k \le \theta_3^k \Phi_3^0$	local	linear	1	4.5	
	$r_{k+1} \le c\theta_3^k r_k$	local	superlinear	1	4.5	
Quantities for which we prove convergence: (i) distance to solution $r_k := x^k - x^* $; (ii) Lyapunov function						

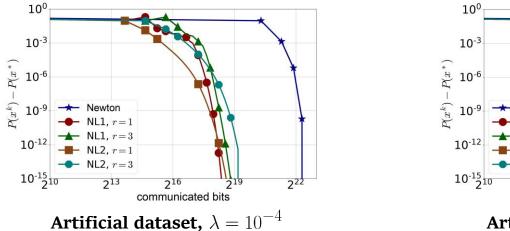
 $\Phi_q^k := \left\| x^k - x^* \right\|^2 + c_q \sum_{i=1}^n \sum_{j=1}^m (h_{ij}^k - h_{ij}(x^*))^2 \text{ for } q = 1, 2, 3, \text{ where } h_{ij}(x^*) = \varphi_{ij}''(a_{ij}^\top x^*) \text{ (see (5)); (iii) Function value suboptimality } \Delta_k := P(x^k) - P(x^*)$

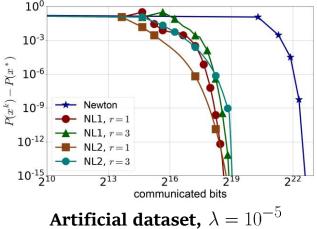
^{\dagger} constant *c* is possibly different each time it appears in this table. Refer to the precise statements of the theorems for the exact values.

NL2: handles the non-regularized case $\lambda = 0$

	Convergence			Rate			
Method	$\mathbf{result}\ ^{\dagger}$	tyr	rate	independent of condition numb			
NEWTON-STAR (NS) (12)	$r_{k+1} \le c r_k^2$	local	quadratic	✓	2.1		
MAX-NEWTON (MN) Algorithm 4	$r_{k\perp} \ge cr_k^2$	local	quadratic	✓	D.1		
NEWTON-LEARN (NL1)	$\Psi_1^k \le \theta_1^k \Phi_1^0$	local	linear	✓ <i>✓</i>	3.2		
Algorithm 1	$r_{k+1} \le c\theta_1^k r_k$	local	superlinear	1	3.2		
NEWTON-LEARN (NL2)	$\Phi_2^k \le \theta_2^k \Phi_2^0$	local	linear	1	3.5		
Algorithm 2	$r_{k+1} \leq c\theta_2^k r_k$	local	superlinear	1	3.5		
	$\Delta_k \leq \frac{c}{k}$	global	sublinear	×	4.3		
CUBIC-NEWTON-LEARN (CNL)	$\Delta_k \le c \exp(-k/c)$	global	linear	×	4.4		
Algorithm 3	$\overline{\Phi}_3^k \le \theta_3^k \Phi_3^0$	local	linear	1	4.5		
	$< c \theta_{a}^{k} r_{k}$	local	superlinear	1	4.5		
Quantities for which we prove convergence: (i) distance to the $x_k := \ x^k - x^*\ $; (ii) Lyapunov function							
$\Phi_q^k := \left\ x^k - x^* \right\ ^2 + c_q \sum_{i=1}^n \sum_{j=1}^m (h_{ij}^k - h_{ij}(x^*))^2 \text{ for } q = 1, 2, 3, \text{ where } h_{ij}(x^*) = \varphi_{ij}(\varphi_{ij}) \right\ $ CNL: Global convergence							
tion value suboptimality $\Delta_k := P(x^*) - P(x^*)$							
[†] constant <i>c</i> is possibly different each time it appears in this table. Refer to the precise statements of t via cubic regularization							
exact values.							

Experiments: comparison with Newton's method

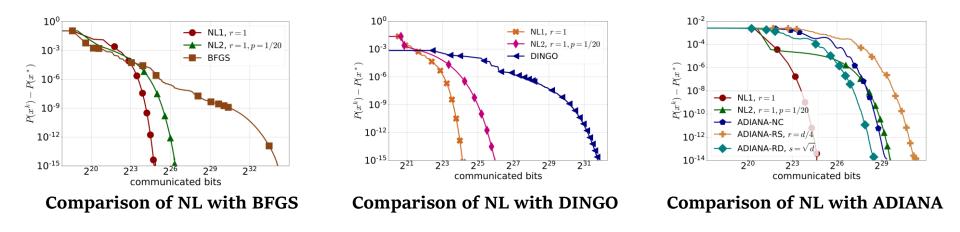




$$\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \frac{1}{m} \sum_{j=1}^m \log(1 + \exp(-b_{ij} a_{ij}^\top x)) + \frac{\lambda}{2} \|x\|^2 \right\}$$

Logistic regression problem

Experiments: comparison with ADIANA, DINGO, BFGS



$$\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \frac{1}{m} \sum_{j=1}^m \log(1 + \exp(-b_{ij} a_{ij}^\top x)) + \frac{\lambda}{2} \|x\|^2 \right\}$$

Logistic regression problem

The End