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How to handle 
communication bottleneck?

Local methods

Compression

Examples: QSGD, DCGD,
DIANA, ADIANA, MARINA

Requires less bits

Examples: FedAvg, 
SCAFFOLD, Local-GD

Decrease the number of 
communication rounds
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Pros and Cons of Distributed 
First order methods

Compressed methods

Very well investigated already
Provably benefit from compressed communication 

Rates depend on the condition number  

Hard to find optimal stepsizes
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Very well investigated already
Provably benefit from compressed communication 

Rates depend on the condition number  

Hard to find optimal stepsizes

Examples: QSGD, DCGD,
DIANA, ADIANA, MARINA

Local methods
Not that well understood

Very limited communication avoidance effect 

Rates depend on the condition number  

Hard to find optimal stepsizes

Bad for heterogeneous data
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Existing second order methods suffer from at least one of these issues:

Communication cost is high (communication of Hessian matrices)

Rates depend on the condition number
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Second Order Methods to the Rescue?
Existing second order methods suffer from at least one of these issues:

Communication cost is high (communication of Hessian matrices)

Rates depend on the condition number

Often no problem with stepsize selection

GOAL Develop a communication-efficient distributed Newton-type method 
whose (local) convergence rate is independent of the condition number

Can provably benefit from communication compression

Rate is independent of the condition number
No issue with stepsize selection

New nature of local steps

Good rate for local convergence only
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Global function we want to minimize:

Local function owned by machine i:
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NEWTON-STAR: Local Quadratic Convergence
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Training data vectors 



NEWTON-STAR: Local Quadratic Convergence

Training data vectors Regularization parameter
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NEWTON-STAR: Summary

Local quadratic convergence rate independent 
of the condition number

The Hessian at the optimum in unknown

Cheap O(d) communication cost
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Assumption 1 Assumption 2

Rank-1 matrices formed from the training data vectors
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NEWTON-LEARN

Desire: Communication-
efficient “approximation” 

of the Hessian 

Wish list:

Local rate independent of the condition number
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Compression operator (e.g., sparsification such as Rand-R)

Compressing the update inspired 
(by first-order method DIANA)

Compressing the update inspired 
(by first-order method DIANA)

Rand-R has 
variance parameter



Learning Mechanism in NEWTON-LEARN

Stepsize

Projection onto 
nonnegative orthant

17

Compression operator (e.g., sparsification such as Rand-R)

Compressing the update inspired 
(by first-order method DIANA)

Compressing the update inspired 
(by first-order method DIANA)
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NEWTON-LEARN: Local Linear Convergence

This is a local result:

Lyapunov function

Rate depends on the 
compressor only

We provably 
learn the Hessian
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Further results

CNL: Global convergence 

via cubic regularization 
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NL2: handles the 

non-regularized case



Experiments: comparison with 
Newton’s method

Artificial dataset, Artificial dataset,
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Logistic regression problem



Experiments: comparison with 
ADIANA, DINGO, BFGS

Comparison of NL with BFGS Comparison of NL with DINGO Comparison of NL with ADIANA

Logistic regression problem
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The End
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